Selected Grantee Publications
Gene Editing of Pigs to Control Influenza A Virus Infections
Kwon et al., Emerging Microbes & Infections. 2024.
https://pubmed.ncbi.nlm.nih.gov/39083026/
A reduction in the efficacy of vaccines and antiviral drugs for combating infectious diseases in agricultural animals has been observed. Generating genetically modified livestock species to minimize susceptibility to infectious diseases is of interest as an alternative approach. The researchers developed a homozygous transmembrane serine protease 2 (TMPRSS2) knockout (KO) porcine model to investigate resistance to two influenza A virus (IAV) subtypes, H1N1 and H3N2. TMPRSS2 KO pigs demonstrated diminished nasal cavity viral shedding, lower viral burden, and reduced microscopic lung pathology compared with wild-type (WT) pigs. In vitro culturing of primary bronchial epithelial cells (PBECs) demonstrated delayed viral replication in TMPRSS2 KO pigs compared with WT pigs. This study demonstrates the potential use of genetically modified pigs to mitigate IAV infections in pigs and limit transmission to humans. Supported by ORIP (U42OD011140), NHLBI, NIAID, and NIGMS.
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Large Animal Models Enhance the Study of Crypt-Mediated Epithelial Recovery From Prolonged Intestinal Ischemia Reperfusion Injury
McKinney-Aguirre et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39404771/
Intestinal ischemia and reperfusion injury (IRI) is a severe pathological alteration that compromises the intestinal epithelial barrier, causing bacterial translocation, shock, sepsis, and potentially death. Preclinical research for IRI has focused on utilizing murine models, but mice demonstrate key anatomical and physiological intestinal differences from humans, such as tissue enzymes, intestinal permeability, and hypoxic response pathways. The researchers compared a 3-hour IRI porcine model to a 3-hour IRI murine model to reveal which demonstrated a stronger translational capacity. Both models demonstrated crypt damage, but only the porcine model showed recovery-associated crypt death expansion and re-epithelialization. At 72 hours post-IRI, mouse mortality was 84.6%, whereas porcine mortality was 0%. A porcine model would be more reliable for future translational studies focused on understanding IRI mechanisms for diagnosis and therapy advancements. Supported by ORIP (T32OD011130, K01OD010199, R03OD026598) and NIDDK.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Gap-Junction-Mediated Bioelectric Signaling Required for Slow Muscle Development and Function in Zebrafish
Lukowicz-Bedford et al., Current Biology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38936363
Using the neuromuscular system of embryonic zebrafish as a model, Lukowicz-Bedford et al. have identified a protein that is responsible for controlling bioelectric signaling in slow muscle development and function. Bioelectric signaling is a form of intercellular communication that has emerged as a key regulator of animal development. These signals can be mediated by gap junction channels—fast, direct pathways between cells for the movement of ions and other small molecules—that are formed in vertebrates by a highly conserved transmembrane protein family called connexins. However, the connexin gene family is large and complex, making it challenging to identify specific connexins that create channels within developing and mature tissues. This work reveals a molecular basis for gap-junction communication among developing muscle cells and shows how disruptions to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Supported by ORIP (R24OD026591), NINDS, and NIGMS.
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Anti–PD-1 Chimeric Antigen Receptor T Cells Efficiently Target SIV-Infected CD4+ T Cells in Germinal Centers
Eichholtz et al., The Journal of Clinical Investigation. 2024.
https://pubmed.ncbi.nlm.nih.gov/38557496/
Researchers conducted adoptive transfer of anti–programmed cell death protein 1 (PD-1) chimeric antigen receptor (CAR) T cells in simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes on antiretroviral therapy (ART). In some macaques, anti–PD-1 CAR T cells expanded and persisted concomitant with the depletion of PD-1+ memory T cells—including lymph node CD4+ follicular helper T cells—associated with depletion of SIV RNA from the germinal center. Following CAR T infusion and ART interruption, SIV replication increased in extrafollicular portions of lymph nodes, plasma viremia was higher, and disease progression accelerated, indicating that anti–PD-1 CAR T cells depleted PD-1+ T cells and eradicated SIV from this immunological sanctuary. Supported by ORIP (U42OD011123, U42OD010426, P51OD010425, P51OD011092), NCI, NIAID, and NIDDK.
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Isolation of Human Antibodies Against Influenza B Neuraminidase and Mechanisms of Protection at the Airway Interface
Wolters et al., Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/38823390
In this report, researchers describe the isolation of human monoclonal antibodies (mAbs) that recognized the influenza B virus (IBV) neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Their work suggests that the antibodies recognized two major antigenic sites. The first group included mAb FluB-393, and the second group contained an active site mAb, FluB-400. Their findings can help inform the mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates. Supported by ORIP (K01OD036063) and NIGMS.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.