Selected Grantee Publications
- Clear All
- 2 results found
- nidcr
- CRISPR
- Microscopy
The Widely Used Ucp1-Cre Transgene Elicits Complex Developmental and Metabolic Phenotypes
Halurkar et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39824816
Bacterial artificial chromosome technology is instrumental to mouse transgenics, including in studies of highly thermogenic brown adipose tissue and energy-storing white adipose tissue. Researchers discovered that male and female Ucp1-CreEvdr transgenic mice, which are commonly used to study fat tissue, may have unintended effects on metabolism and development. Findings revealed that these mice show changes in both brown and white fat function and disruptions in gene activity, suggesting broader physiological impacts than previously thought. This study emphasizes the need for careful validation of genetic tools in research to ensure accurate results, highlighting the potential concerns in using the Ucp1-CreEvdr model in metabolic and developmental studies. Supported by ORIP (R21OD034470, R21OD031907) NCATS, NIDCR, and NIDDK.
Identification of a Heterogeneous and Dynamic Ciliome during Embryonic Development and Cell Differentiation
Elliott et al., Development. 2023.
Ciliopathies are a class of diseases that arise when the structure or function of the cilium is compromised. To definitively determine the extent of heterogeneity within the ciliome, investigators compared the ciliomes of six distinct embryonic domains. The data comprehensively revealed that about 30% of the ciliome is differentially expressed across analyzed tissues in the developing embryo. Furthermore, upregulation of numerous ciliary genes correlated with osteogenic cell-fate decisions, suggesting that changes in the ciliome contribute to distinct functions of cell types in vertebrate species. Supported by ORIP (UM1OD023222), NIDCR, and NIGMS.