Selected Grantee Publications
Trim-Away Mediated Knock Down Uncovers a New Function for Lbh During Gastrulation of Xenopus laevis
Weir et al., Developmental Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33159936/
The protein Lbh was identified as necessary for cranial neural crest cell migration in Xenopus. To investigate its role in embryonic events, the authors employed the technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody. Early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increase in mesodermal cell migration and decrease in endodermal cell cohesion. The technique is also effective on a second abundant maternal Protein Kinase C And Casein Kinase Substrate In Neurons 2. Supported by ORIP (R24OD021485) and NIDCR.
Myelin‐Specific T Cells in Animals With Japanese Macaque Encephalomyelitis
Govindan et al., Annals of Clinical and Translational Neurology. 2021.
https://onlinelibrary.wiley.com/doi/10.1002/acn3.51303
Investigators characterized the CD4+ and CD8+ T cells in demyelinating Japanese macaque encephalomyelitis (JME) lesions in age‐ and sex‐matched macaques and discovered differences in expression of myelin antigen sequences in the T cell. Mapping myelin epitopes revealed a heterogeneity in T cell responses among JME animals, which are associated with a proinflammatory pathogenic role in multiple sclerosis (MS). These findings draw further parallels between JME and MS and support the hypothesis that JME and possibly MS are triggered by mechanisms involving myelin damage and not myelin epitope mimicry. Supported by ORIP (P51OD011092) and NINDS.