Selected Grantee Publications
- Clear All
- 2 results found
- nida
- Microbiome
- Stem Cells/Regenerative Medicine
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.