Selected Grantee Publications
- Clear All
- 11 results found
- nichd
- Stem Cells/Regenerative Medicine
- Women's Health
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.
Effects of Pulsatile Intravenous Follicle-Stimulating Hormone Treatment on Ovarian Function in Women With Obesity
Luu et al., Fertility and Sterility. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276947/
By performing intravenous (IV) administration of pulsatile recombinant follicle-stimulating hormone (FSH), researchers established conditions for effective hypothalamic suppression in women with normal and high body mass index (BMI). In women with obesity, the treatment resulted in E2 and inhibin B levels comparable to those in normal-weight women. This work offers a potential strategy to mitigate some of the adverse effects of high BMI on fertility, assisted reproduction, and pregnancy outcomes. Supported by ORIP (K01OD026526), NIA, and NICHD.
Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography
Coughlan et al., JAMA Neurology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37010830/
To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability. This study suggests female individuals with these conditions may be at higher risk of pathological burden. Supported by ORIP (S10OD025245), NIA, and NICHD.
Impaired Placental Hemodynamics and Function in a Non-Human Primate Model of Gestational Protein Restriction
Lo et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-28051-y
Maternal malnutrition is a global health epidemic that adversely affects fetal outcomes and results in long-term health complications in children. Investigators used a previously developed model in nonhuman primates for gestational protein restriction to study the impact of undernutrition, specifically protein deficiency, on placental function and pregnancy outcomes. The data demonstrate that a 50% protein-restricted diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics could partly explain human growth restriction and stillbirth seen with severe protein restriction in developing countries. Supported by ORIP (P51OD011092) and NICHD.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
X Chromosome Agents of Sexual Differentiation
Arnold et al., Nature Reviews Endocrinology. 2022.
https://www.doi.org/10.1038/s41574-022-00697-0
Many diseases affect one sex disproportionately. A major goal of biomedical research is to understand which sex-biasing factors influence disease severity and to develop therapeutic strategies to target these factors. Two groups of such agents are sex chromosome genes and gonadal hormones. Researchers use the “four core genotypes” model to enable comparisons among animals with different sex chromosomes but the same type of sex hormones, which allows investigators to distinguish disease mechanisms influenced by the sex chromosomes. Supported by ORIP (R01OD030496, R21OD026560), NICHD, NIDDK, and NHLBI.
Metabolic Transitions Define Spermatogonial Stem Cell Maturation
Voigt et al., Human Reproduction. 2022.
https://www.doi.org/10.1093/humrep/deac157
The spermatogonial stem cell (SSC) is the basis of male fertility. One potential option to preserve fertility in patients treated with anti-cancer therapy is isolation and laboratory culture of the juvenile SSC pool with subsequent transplantation to restore spermatogenesis. However, efficient culture of undifferentiated spermatogonia, including SSCs, in mammals other than rodents remains challenging. Investigators reported that the metabolic phenotype of prepubertal human spermatogonia is distinct from that of adult spermatogonia and that SSC development is characterized by specific metabolic transitions from oxidative phosphorylation to anaerobic metabolism. Supported by ORIP (R01OD016575) and NICHD.
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.