Selected Grantee Publications
- Clear All
- 5 results found
- nichd
- nimh
- Microbiome
Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development
Sharpton et al., Zebrafish. 2023.
https://pubmed.ncbi.nlm.nih.gov/38117219/
Standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, the authors presented findings from a 7-month diet test study conducted across three aquatic research facilities: Zebrafish International Resource Center (University of Oregon), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (Texas State University). They compared the effects of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and medaka), and three zebrafish wild-type strains. They reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Supported by ORIP (P40OD011021, R24OD011120, and R24OD010998) and NICHD.
Sociability in a Non-Captive Macaque Population Is Associated with Beneficial Gut Bacteria
Johnson et al., Frontiers in Microbiology. 2022.
https://www.doi.org/10.3389/fmicb.2022.1032495
Social connections are essential for good health and well-being in social animals, such as humans and other primates. Increasingly, evidence suggests that the gut microbiome—through the so-called “gut–brain axis”—plays a key role in physical and mental health and that bacteria can be transmitted socially (e.g., through touch). Here, the authors explore behavioral variation in non‑captive rhesus macaques of both sexes with respect to the abundance of specific bacterial genera. Their results indicate that microorganisms whose abundance varies with individual social behavior also have functional links to host immune status. Overall, these findings highlight the connections between social behavior, microbiome composition, and health in an animal population. Supported by ORIP (P40OD012217) and NIMH.
Reduced Alcohol Preference and Intake after Fecal Transplant in Patients with Alcohol Use Disorder Is Transmissible to Germ-Free Mice
Wolstenholme et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-34054-6
Alcohol use disorder is a major cause of reduced life expectancy worldwide, and this misuse has increased exponentially during the COVID-19 pandemic. Fecal microbiota transplant has been shown previously to reduce alcohol craving in humans with cirrhosis. Here, the investigators report that the reduction in craving and alcohol preference is transmissible to male germ-free mice only when live bacteria—and not germ-free supernatants—are used for colonization. This differential colonization was associated with alterations in the gut immune–inflammatory response through short-chain fatty acids. Supported by ORIP (P40OD010995), NIAAA, NIDDK, and NIMH.
Large Comparative Analyses of Primate Body Site Microbiomes Indicate That the Oral Microbiome Is Unique Among All Body Sites and Conserved Among Nonhuman Primates
Asangba et al., Microbiology Spectrum. 2022.
https://www.doi.org/10.1128/spectrum.01643-21
Microbiomes are critical to host health and disease, but large gaps remain in the understanding of the determinants, coevolution, and variation of microbiomes across body sites and host species. Thus, researchers conducted the largest comparative study of primate microbiomes to date by investigating microbiome community composition at eight distinct body sites in 17 host species. They found that the oral microbiome is unique in exhibiting notable similarity across primate species while being distinct from the microbiomes of all other body sites and host species. This finding suggests conserved oral microbial niche specialization, despite substantial dietary and phylogenetic differences among primates. Supported by ORIP (P51OD010425, P51OD011107, P40OD010965, R01OD010980), NIA, NIAID, and NICHD.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.