Selected Grantee Publications
Early Treatment Regimens Achieve Sustained Virologic Remission in Infant Macaques Infected with SIV at Birth
Wang et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32554-z
About 150,000 children are infected postnatally with HIV each year. Early antiretroviral therapy (ART) in infants with HIV can reduce viral reservoir size, but ART-free virologic remission has not been achieved. The researchers hypothesized that proviral reservoir seeding in infants exposed to HIV might differ from that in adults. They characterized viral reservoirs in neonatal rhesus macaques of both sexes inoculated with simian immunodeficiency virus (SIV) at birth and given combination ART. The researchers reported that 9 months of treatment initiated at day 3 resulted in a sustained virologic remission, suggesting that early intervention with proper treatment regimens could be an effective strategy. Supported by ORIP (P51OD011104), NIAID, NICHD, and NIDCR.
Parallel Processing, Hierarchical Transformations, and Sensorimotor Associations along the “Where” Pathway
Doudlah et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.78712
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and map those representations to motor responses. These capabilities are supported by the dorsal “where” pathway in the brain, but the specific contributions of areas along this pathway have remained elusive. Using a rhesus macaque model, researchers compared neuronal activity in two areas along the “where” pathway that bridge the parieto-occipital junction: intermediate visual area V3A and the caudal intraparietal (CIP) area. Neuronal activity was recorded while the animals made perceptual decisions based on judging the tilt of 3D visual patterns. The investigators found that CIP shows higher-order spatial representations and more choice-correlated responses, which support a V3A-to-CIP hierarchy. The researchers also discovered modulation of V3A activity by extraretinal factors, suggesting that V3A might be better characterized as contributing to higher-order behavioral functions rather than low-level visual feature processing. Supported by ORIP (P51OD011106), NEI, NICHD, and NINDS.
Large Comparative Analyses of Primate Body Site Microbiomes Indicate That the Oral Microbiome Is Unique Among All Body Sites and Conserved Among Nonhuman Primates
Asangba et al., Microbiology Spectrum. 2022.
https://www.doi.org/10.1128/spectrum.01643-21
Microbiomes are critical to host health and disease, but large gaps remain in the understanding of the determinants, coevolution, and variation of microbiomes across body sites and host species. Thus, researchers conducted the largest comparative study of primate microbiomes to date by investigating microbiome community composition at eight distinct body sites in 17 host species. They found that the oral microbiome is unique in exhibiting notable similarity across primate species while being distinct from the microbiomes of all other body sites and host species. This finding suggests conserved oral microbial niche specialization, despite substantial dietary and phylogenetic differences among primates. Supported by ORIP (P51OD010425, P51OD011107, P40OD010965, R01OD010980), NIA, NIAID, and NICHD.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Inflammatory Blockade Prevents Injury to the Developing Pulmonary Gas Exchange Surface in Preterm Primates
Toth et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abl8574
Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25% to 40% of preterm births. Investigators used a prenatal rhesus macaque model to assess how fetal inflammation could affect lung development. They found that inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure. Blockade of the inflammatory cytokines IL-1β and TNFα ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells. These data provide new insight into key mechanisms of developmental lung injury and highlight targeted inflammatory blockade as a potential therapeutic approach to ameliorate lung injury in the neonatal population. Supported by ORIP (P51OD011107), NIAID, NHLBI, NICHD, and NIEHS.
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.
Deep Learning Is Widely Applicable to Phenotyping Embryonic Development and Disease
Naert et al., Development. 2021.
https://pubmed.ncbi.nlm.nih.gov/34739029/
Genome editing simplifies the generation of new animal models for congenital disorders. The authors illustrate how deep learning (U-Net) automates segmentation tasks in various imaging modalities. They demonstrate this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). They provide a library of pre-trained networks and detailed instructions for applying deep learning to datasets and demonstrate the versatility, precision, and scalability of deep neural network phenotyping on embryonic disease models. Supported by ORIP (P40OD010997, R24OD030008), NICHD, NIDDK, and NIMH.
Comparative Cellular Analysis of Motor Cortex in Human, Marmoset and Mouse
Bakken et al., Nature. 2021.
https://pubmed.ncbi.nlm.nih.gov/34616062/
Investigators used high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmosets, and mice, to characterize the cellular makeup of the primary motor cortex (M1), which exhibits similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. Despite the overall conservation, many species-dependent specializations are apparent. These results demonstrate the robust molecular foundations of cell-type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Supported by ORIP (P51OD010425), NIMH, NCATS, NINDS, and NIDA.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.