Selected Grantee Publications
Spatiotemporal Image Reconstruction to Enable High-Frame-Rate Dynamic Photoacoustic Tomography With Rotating-Gantry Volumetric Imagers
Cam et al., Journal of Biomedical Optics . 2024.
https://pubmed.ncbi.nlm.nih.gov/38249994
Dynamic photoacoustic computed tomography (PACT) is a valuable imaging technique for monitoring physiological processes. However, the current imaging techniques are often limited to two-dimensional spatial imaging. While PACT imagers capable of taking three-dimensional spatial images are commercially available, these systems have substantial limitations. Typically, the data are acquired sequentially rather than simultaneously at all views. The objects being imaged are dynamic and can vary during this process; as such, image reconstruction is inherently difficult, and the result is often incomplete. Cam et al. propose an image reconstruction method that can address these challenges and enable volumetric dynamic PACT imaging using existing preclinical imagers, which has the potential to significantly advance preclinical research and facilitate the monitoring of critical physiological biomarkers. Supported by ORIP (R44OD023029) and NIBIB.
Synthetic Protein Circuits for Programmable Control of Mammalian Cell Death
Xia et al., Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38657604/
Natural cell-death pathways have been shown to eliminate harmful cells and shape immunity. Researchers used synthetic protein-level cell-death circuits, collectively termed “synpoptosis” circuits, to proteolytically regulate engineered executioner proteins and mammalian cell death. They show that the circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. This work provides a foundation for programmable control of mammalian cell death. Future studies could focus on programmable control of cell death in various contexts, including cancer, senescence, fibrosis, autoimmunity, and infection. Supported by ORIP (F30OD036190) and NIBIB.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.