Selected Grantee Publications
- Clear All
- 6 results found
- nibib
- niehs
- Immunology
Prostatic Escherichia coli Infection Drives CCR2-Dependent Recruitment of Fibrocytes and Collagen Production
Scharpf et al., Disease Models & Mechanisms. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11789281
In men, lower urinary tract dysfunction (LUTD) is commonly linked to prostatic collagen accumulation through inflammation-mediated mechanisms. Researchers used 8- to 10-week-old male reporter mice, exposed to either sterile phosphate buffered saline (PBS) or Escherichia coli, to identify that circulating Lyz2+S100a4+Gli1+ myeloid-derived cells are recruited to the prostate to drive inflammation and collagen synthesis. Researchers also used 8- to 10-week-old male Ccr2‑/ - null and Ccr2+/- control mice, exposed to either sterile PBS or E. coli, to determine if Ccr2 is necessary for the fibrotic response to prostatic uropathogen infection. Results demonstrated that CCR2+ cells mediate the collagen abundance and fibrotic response to prostate inflammation. This study elucidates the cell types underlying prostate fibrosis and can be utilized to develop targeted therapies. Supported by ORIP (T32OD010957), NCI, NIDDK, and NIEHS.
Synthetic Protein Circuits for Programmable Control of Mammalian Cell Death
Xia et al., Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38657604/
Natural cell-death pathways have been shown to eliminate harmful cells and shape immunity. Researchers used synthetic protein-level cell-death circuits, collectively termed “synpoptosis” circuits, to proteolytically regulate engineered executioner proteins and mammalian cell death. They show that the circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. This work provides a foundation for programmable control of mammalian cell death. Future studies could focus on programmable control of cell death in various contexts, including cancer, senescence, fibrosis, autoimmunity, and infection. Supported by ORIP (F30OD036190) and NIBIB.
Adverse Biobehavioral Effects in Infants Resulting from Pregnant Rhesus Macaques’ Exposure to Wildfire Smoke
Capitanio et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-29436-9
Exposure to wildfire smoke (WFS) is a growing health concern as wildfires increase in number and size due to climate change. Researchers found that developing rhesus monkeys exposed to WFS from the Camp Fire in California (November 2018) during the first third of gestation exhibited greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated. Analysis of a historical control cohort did not support the alternative hypothesis that conception timing alone explained the results. These findings suggest that WFS may have a teratogenic effect on neural development in the primate fetus. Supported by ORIP (P51OD011107, R24OD010962) and NIEHS.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Inflammatory Blockade Prevents Injury to the Developing Pulmonary Gas Exchange Surface in Preterm Primates
Toth et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abl8574
Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25% to 40% of preterm births. Investigators used a prenatal rhesus macaque model to assess how fetal inflammation could affect lung development. They found that inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure. Blockade of the inflammatory cytokines IL-1β and TNFα ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells. These data provide new insight into key mechanisms of developmental lung injury and highlight targeted inflammatory blockade as a potential therapeutic approach to ameliorate lung injury in the neonatal population. Supported by ORIP (P51OD011107), NIAID, NHLBI, NICHD, and NIEHS.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.