Selected Grantee Publications
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology
Huang et al., The Journal of Infectious Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/38079216/
Brain tissue–derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from male pigtailed macaques, researchers identified dysregulated RNAs in acute and chronic infection. Most dysregulated messenger RNAs (mRNAs) in bdEVs reflected dysregulation in source BH, and these mRNAs are disproportionately involved in inflammation and immune responses. Additionally, several circular RNAs were differentially abundant in source tissue and might be responsible for specific differences in small RNA levels in bdEVs during simian immunodeficiency virus (SIV) infection. This RNA profiling shows potential regulatory networks in SIV infection and SIV-related CNS pathology. Supported by ORIP (U42OD013117), NCI, NIAID, NIDA, NIMH, and NINDS.
Deletion of Mouse Lysyl Oxidase in Megakaryocytes Affects Bone Properties in a Sex-Dependent Manner
Karagianni, Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38635757/
Lysyl oxidase (LOX) is a facilitator of extracellular matrix cross-linking, and the importance of LOX in bone formation has been addressed in both in vitro and in vivo studies. Using newly developed megakaryocyte-specific LOX knockout mice, the researchers show that LOX expressed in these scarce bone marrow cells leads to changes in bone volume and mechanical strength in male mice; however, no significant changes were observed within the female experimental groups. The authors’ findings suggest that sex hormones could contribute to differences within these dynamics. Supported by ORIP (K01OD025290) and NIAMS.
Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects Against Influenza
Cully et al., Immunohorizons. 2024.
https://pubmed.ncbi.nlm.nih.gov/39007717/
Tertiary lymphoid structures (TLS) have context-specific roles, and more work is needed to understand how they function in separate diseases to drive or reduce pathology. Researchers showed previously that lymph node formation is ablated in mice constitutively lacking IκB kinase alpha (IKKα) in lymphatic endothelial cells (LECs). In this study, they demonstrated that loss of IKKα in lymphatic endothelial cells leads to the formation of bronchus-associated lymphoid tissue in the lung. Additionally, they showed that male and female mice challenged with influenza A virus (IAV) exhibited markedly improved survival rates and reduced weight loss, compared with littermate controls. They concluded that ablating IKKα in this tissue reduces the susceptibility of the mice to IAV infection through a decrease in proinflammatory stimuli. This work provides a new model to explore the mechanisms of TLS formation and the immunoregulatory function of lung lymphatics. Supported by ORIP (T35OD010919), NHLBI, NIAID, and NIAMS.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Neutralizing Antibody Response to SARS‐CoV‐2 Bivalent mRNA Vaccine in SIV‐Infected Rhesus Macaques: Enhanced Immunity to XBB Subvariants by Two‐Dose Vaccination
Faraone, Journal of Medical Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38528837/
Researchers have shown that mRNA vaccination is less effective for people with advanced or untreated HIV infection, but data on the efficacy of mRNA vaccination against SARS-CoV-2 in this population are limited. Using rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV), investigators examined the neutralizing antibody (nAb) response to SARS-CoV-2 vaccination. They found that administration of the bivalent vaccine alone can generate robust nAb titers against Omicron subvariants. Additionally, dams that received antiretroviral therapy had lower nAb titers than untreated dams. Overall, these findings highlight the need for further investigations into the nAb response in people with HIV. Supported by ORIP (P51OD011104), NCI, NIAID, NICHD, and NIMH.
Molecular Basis of Human Trace Amine-Associated Receptor 1 Activation
Zilberg et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-023-44601-4
The authors reported the cryogenic electron microscopy structure of human trace amine-associated receptor 1 (hTAAR1, hTA1) signaling complex, a key modulator in monoaminergic neurotransmission, as well as its similarities and differences with other TAAR members and rodent TA1 receptors. This discovery has elucidated hTA1’s molecular mechanisms underlining the strongly divergent pharmacological properties of human and rodent TA1 and therefore will boost the translation of preclinical studies to clinical applications in treating disorders of dopaminergic dysfunction, metabolic disorders, cognitive impairment, and sleep-related dysfunction. Supported by ORIP (S10OD019994, S10OD026880, and S10OD030463), NIDA, NIGMS, NIMH, and NCATS.