Selected Grantee Publications
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
X Chromosome Agents of Sexual Differentiation
Arnold et al., Nature Reviews Endocrinology. 2022.
https://www.doi.org/10.1038/s41574-022-00697-0
Many diseases affect one sex disproportionately. A major goal of biomedical research is to understand which sex-biasing factors influence disease severity and to develop therapeutic strategies to target these factors. Two groups of such agents are sex chromosome genes and gonadal hormones. Researchers use the “four core genotypes” model to enable comparisons among animals with different sex chromosomes but the same type of sex hormones, which allows investigators to distinguish disease mechanisms influenced by the sex chromosomes. Supported by ORIP (R01OD030496, R21OD026560), NICHD, NIDDK, and NHLBI.
Distinct Metabolic States Guide Maturation of Inflammatory and Tolerogenic Dendritic Cells
Adamik et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32849-1
The investigators mapped single-cell metabolic states and immune profiles of inflammatory and tolerogenic monocytic dendritic cells using recently developed multiparametric approaches. Activation scores revealed simultaneous engagement of multiple metabolic pathways in distinct monocytic dendritic cell differentiation stages (e.g., rapid reprogramming of glycolytic monocytes and transient co-activation of mitochondrial pathways followed by maturation of dendritic cells). This data set provides insights into metabolic pathways that affect the immune profiles of human dendritic cells. Supported by ORIP (S10OD026940) and NIDDK.
Targeted Suppression of Human IBD-Associated Gut Microbiota Commensals by Phage Consortia for Treatment of Intestinal Inflammation
Federici et al., Cell. 2022.
https://www.doi.org/10.1016/j.cell.2022.07.003
Human gut commensals increasingly are suggested to affect noncommunicable diseases, such as inflammatory bowel disease (IBD), yet their targeted suppression remains an unmet challenge. In this report, investigators identified a clade of Klebsiella pneumoniae (Kp) strains—featuring a unique antibiotic resistance and mobilome signature—that is associated strongly with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice of both sexes enhances intestinal inflammation. An orally administered combination phage therapy targeting sensitive and resistant IBD-associated Kp clade members enables effective Kp suppression, suggesting the feasibility of avoiding antibiotic resistance while effectively inhibiting noncommunicable disease–contributing pathobionts. Supported by ORIP (P40OD010995) and NIDDK.
Obesity Alters Pathology and Treatment Response in Inflammatory Disease
Bapat et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-04536-0
Obesity and metabolic disease have been shown to affect immunotherapeutic outcomes. By studying classical type 2 T helper cells (TH2) in lean and obese male mouse models for atopic dermatitis, investigators found that the biologic therapies protected lean mice but exacerbated disease in obese mice. RNA sequencing and genome analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells in obese mice when compared to lean mice, indicating that PPARγ is required to prevent aberrant non-TH2 inflammation. Understanding the effects of obesity on immunological disease could inform a potential precision medicine approach to target obesity-induced immune dysregulation. Supported by ORIP (S10OD023689), NIAID, NCI, NIDDK, and NIGMS.
Common and Divergent Features of T Cells From Blood, Gut, and Genital Tract of Antiretroviral Therapy–Treated HIV+ Women
Xie et al., Journal of Immunology. 2022.
https://www.doi.org/10.4049/jimmunol.2101102
T cells residing in mucosal tissues play important roles in homeostasis and defense against microbial pathogens, but how organ system environments affect the properties of resident T cells is relatively unknown. Researchers phenotyped T cells in the gut and reproductive tract using blood and tissue samples from women with HIV who have achieved viral suppression via antiretroviral therapy. The T cells exhibited differing expression of CD69 and CD103 markers, whereas resident memory CD8+ T cells from the female reproductive tract expressed PD1 preferentially. Additionally, CXCR4+ T inflammatory mucosal cells expressed multiple chemokine receptors differentially. These results suggest that T cells take on distinct properties in different mucosal sites, which allows them to tailor activities to their surrounding milieu. This study offers important insights for reproductive medicine in women. Supported by ORIP (S10OD018040), NHLBI, NIAID, and NIDDK.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Simian Immunodeficiency Virus Infection Mediated Changes in Jejunum and Peripheral SARS-CoV-2 Receptor ACE2 and Associated Proteins or Genes in Rhesus Macaques
Boby et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.835686
Recent studies suggest that people with HIV—particularly those not receiving antiretroviral therapy or those with low CD4 cell counts—are at increased risk of severe illness from SARS‑CoV-2 coinfection. Angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, is likely to play an important role in modulating physiological and pathological events during HIV infection. In this study, the researchers used a rhesus macaque model to characterize the expression profiles of ACE2, other renin-angiotensin system (RAS)–associated genes (AGTR1/2, ADAM17, and TMPRSS2), and inflammatory cytokines (IL-1β, IL-6, and TNF‑α) in the jejunum and lung during simian immunodeficiency virus (SIV) infection. SIV infection was associated with multiple changes in gene expression, including downregulation of ACE2, which could lead to loss of gut homeostasis. Further studies could provide insight on the role of RAS-associated proteins during HIV and SARS-CoV-2 co-infection. Supported by ORIP (P51OD011104) and NIDDK.
Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation
Eerhart et al., Transplantation. 2022.
Investigators evaluated the efficacy of a high-dose recombinant human C1 esterase inhibitor (rhC1INH) in preventing delayed graft function (DGF) in a rhesus macaque (RM) model for kidney transplantation after brain death and prolonged cold ischemia. The majority (4 of 5) of vehicle-treated recipients developed DGF, whereas DGF was observed in only 1 of 8 rhC1INH-treated recipients. RMs treated with rhC1INH also had faster creatine recovery, superior urinary output, and reduced biomarkers of allograft injury for the first week. The results suggest high-dose C1INH treatment in transplant recipients is an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes. Supported by ORIP (P51OD011106), NIAID, and NIDDK.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.