Selected Grantee Publications
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
PGRN Deficiency Exacerbates, Whereas a Brain Penetrant PGRN Derivative Protects, GBA1 Mutation–Associated Pathologies and Diseases
Zhao et al., Proc Natl Acad Sci USA. 2023.
https://www.pnas.org/doi/10.1073/pnas.2210442120
Mutations in GBA1 are associated with Gaucher disease (GD) and are also genetic risks in developing Parkinson’s disease (PD). Investigators created a mouse model and demonstrated that progranulin (PGRN) deficiency in Gba1 mutant mice caused early onset and exacerbated GD phenotypes, leading to substantial increases in substrate accumulation and inflammation in visceral organs and the central nervous system. These in vivo and ex vivo data demonstrated that PGRN plays a crucial role in the initiation and progression. In addition, the mouse model provides a clinically relevant system for testing therapeutic approaches for GD and PD. Supported by ORIP (R21OD033660), NIAMS, and NINDS.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Creb5 Establishes the Competence for Prg4 Expression in Articular Cartilage
Zhang et al., Communications Biology. 2021.
https://doi.org/10.1038/s42003-021-01857-0
Cells comprising the superficial zone of articular cartilage express lubricin, encoded by the Prg4 gene, that lubricates joints. Researchers identified Creb5 as a transcription factor that is required for TGF-β and EGFR signaling to induce Prg4 expression. Forced expression of Creb5 in deep-zone chondrocytes of articular cartilage confers competence for TGF-β and EGFR signals to induce Prg4 expression. The researchers showed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, which work together with a more distal regulatory element to drive induction of Prg4 by TGF-β. Thus, Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage. Supported by ORIP (U42OD11158), NIAMS, and NIDDK.