Selected Grantee Publications
Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection
León et al., mBio. 2025.
https://pubmed.ncbi.nlm.nih.gov/39912630
Seasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin (HA) viral fusion protein. To support the further development of these stem-targeting vaccine candidates, researchers used negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals (male and female) who were exposed to influenza antigens through traditional vaccination or natural infection during the 2018–2019 flu season. Results demonstrated humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs found in both vaccinated and infected patients. Results from this study support the need for further characterization of protective responses toward conserved epitopes and provide a baseline for examining antibody responses. Supported by ORIP (K01OD036063) and NIAID.
Whole-Genome Sequences of Six Borrelia recurrentis Strains Obtained via PacBio Sequencing
Gaber et al., Microbiology Resource Announcements. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11895452
The spirochetal bacterium Borrelia recurrentis causes louse-borne relapsing fever (LBRF), which leads to significant morbidity and mortality in several African countries. Previous sequencing studies of B. recurrentis demonstrated discrepancies and did not accurately define the antigenic variation system. In this study, researchers used long-read PacBio technology to conduct whole-genome sequencing of six B. recurrentis strains that had been isolated from LBRF patients earlier. The resulting sequences of each genome included one linear chromosome and five linear plasmids, whose average size was 1,284,895 bp, with the mean GC content being 27.5%. Supported by ORIP (T32OD011083) and NIAID.
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
Quorum Sensing LuxR Proteins VjbR and BabR Jointly Regulate Brucella abortus Survival During Infection
Caudill et al., Journal of Bacteriology. 2025.
https://pubmed.ncbi.nlm.nih.gov/40013834
Brucella abortus is a zoonotic bacterial pathogen that causes brucellosis, a persistent chronic infection that is globally endemic. B. abortus uses quorum sensing to escape immune clearance attempts, regulate virulence, and cause persistent infection within hosts. B. abortus quorum sensing system comprises two LuxR proteins, VjbR and BabR, as well as two signals, dodecanoyl (C12 AHL) and 3-oxododecanoyl (3-OXO-C12 AHL) homoserine lactone. Using chronic infection 6- to 7-week-old C57Bl/6 and BALB/c male and female mouse models, researchers found that the ΔvjbRΔbabR double-deletion strain was attenuated compared with single mutants. These results demonstrate that both quorum sensing proteins, VjbR and BabR, coordinate to maintain survival. This study helps further characterize the Brucella quorum sensing systems and indicates that further attention should be given to the joint interactions between VjbR and BabR in controlling virulence. Supported by ORIP (T32OD028239) and NIAID.
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Responses to Acute Infection with SARS-CoV-2 in the Lungs of Rhesus Macaques, Baboons and Marmosets
Singh et al., Nature Microbiology. 2020.
https://www.nature.com/articles/s41564-020-00841-4
Investigators compared acute SARS-CoV-2 infection in young and old rhesus macaques and baboons. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies; both age groups recovered within 2 weeks. Baboons had prolonged viral RNA shedding and more lung inflammation compared with macaques; inflammation in bronchoalveolar lavage was increased in old versus young baboons. Macaques developed T-cell memory responses and bystander cytokine production. Old macaques had lower titers of SARS-CoV-2-specific IgG antibody levels compared with young macaques. The results indicate macaques and baboons experience acute respiratory distress that recapitulates the progression of COVID-19 in humans. Supported by ORIP (P51OD111033 and U42OD010442) and NIAID.
The Immune Landscape in Tuberculosis Reveals Populations Linked to Disease and Latency
Esaulova et al., Cell Host Microbe. 2020.
https://pubmed.ncbi.nlm.nih.gov/33340449/
Mycobacterium tuberculosis infection of adult rhesus macaques (RMs), predominantly males (81%), recapitulates both latent (LTBI) and active pulmonary TB (PTB) observed in humans. The immune characterization in lungs of RMs with PTB exhibited an influx of plasmacytoid dendritic cells, an interferon-responsive macrophage population, and activated T cell responses. In contrast, a CD27+ natural killer (NK) cell subset accumulated in the lungs of RMs with LTBI. This NK cell population was also detected in the circulation of humans with LTBI. This characterization of lung immune cells enhances our understanding of TB immunopathogenesis and provides potential targets for therapies and vaccines for TB control. Supported by ORIP (P51OD011104 and P51OD011133), NHLBI, and NIAID.
Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19
Meckiff et al., Cell. 2020.
https://pubmed.ncbi.nlm.nih.gov/33096020/
It is not clear why COVID-19 is deadly in some people and mild in others. To understand the underlying mechanism, investigators studied the contribution of CD4+ T cells in immune responses to SARS-CoV-2 infection. They analyzed single-cell transcriptomic data of >100,000 viral antigen-reactive CD4+ T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, they found increased proportions of cytotoxic follicular helper cells (TFH) and cytotoxic T helper (TH) cells responding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Importantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness, which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, these analyses provided insights into the gene expression patterns of SARS-CoV-2-reactive CD4+ T cells in distinct disease severities. Supported by ORIP (S10RR027366, S10OD025052), NIAID, NHLBI, and NIGMS.
Fructose Stimulated De Novo Lipogenesis Is Promoted by Inflammation
Jelena et al., Nature Metabolism. 2020.
https://pubmed.ncbi.nlm.nih.gov/32839596
Non-alcoholic fatty liver disease (NAFD) affects 30% of adult Americans. While NAFD starts as simple steatosis with little liver damage, its severe manifestation as non-alcoholic steatohepatitis (NASH) is a leading cause of liver failure, cirrhosis, and cancer. Fructose consumption is proposed to increase the risk of hepatosteatosis and NASH. Excessive intake of fructose causes barrier deterioration and low-grade endotoxemia. Using a mouse model, the study examined the mechanism of how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis. The results demonstrated that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signaling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to fatty acid in both mouse and human hepatocytes. The finding may be of relevance to several common liver diseases and metabolic disorders. Supported by ORIP (S10OD020025), NCI, NIEHS, NIDDK, NIAID, and NIAAA.