Selected Grantee Publications
- Clear All
- 37 results found
- niaid
- S10 [SIG, BIG, HEI]
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Effect of Metabolic Status on Response to SIV Infection and Antiretroviral Therapy in Nonhuman Primates
Webb et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39115937
This study examines how metabolic health influences the efficacy of antiretroviral therapy (ART). Using lean and obese male rhesus macaques, researchers explored the progression of simian immunodeficiency virus (SIV) infection. Obese macaques with metabolic dysfunction experienced more rapid disease progression and had a diminished response to ART than lean macaques. This study suggests metabolic health plays a significant role in HIV progression and treatment outcomes, highlighting the importance of managing metabolic conditions in people with HIV. Supported by ORIP (P51OD011092, S10OD025002), NIAID, and NIDDK.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Persistence of a Skewed Repertoire of NK Cells in People With HIV-1 on Long-Term Antiretroviral Therapy
Anderko et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38551350
HIV-1 infection alters the natural killer (NK) cell phenotypic and functional repertoire. A rare population of FcRγ−NK cells exhibiting characteristics of traditional immunologic memory expands in people with HIV. In a longitudinal analysis during the first 4 years of antiretroviral therapy (ART), a skewed repertoire of cytokine unresponsive FcRγ−memory-like NK cells persisted in people with HIV, and surface expression of CD57 and KLRG1 increased, suggesting progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing antibody titers to human cytomegalovirus (CMV), with human CMV viremia detected in approximately one-third of people studied during the first 4 years of ART. About 40% of people studied displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis. These findings indicate that NK cell irregularities persist in people with HIV despite long-term ART. Supported by ORIP (P51OD011132, S10OD026799), NIAID, and NHLBI.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Macrophages Derived From Human Induced Pluripotent Stem Cells (iPSCs) Serve As a High-Fidelity Cellular Model for Investigating HIV-1, Dengue, and Influenza viruses
Yang et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38323811/
Macrophages can be weaponized by viruses to host viral reproduction and support long-term persistence. The most common way of studying these cells is by isolating their precursors from donor blood and differentiating the isolated cells into macrophages. This method is costly and technically challenging, and it produces varying results. In this study, researchers confirmed that macrophages derived from iPSC cell lines—a model that is inexpensive, consistent, and modifiable by genome editing—are a suitable model for experiments involving HIV and other viruses. Macrophages derived from iPSCs are as susceptible to infection as macrophages derived from blood, with similar infection kinetics and phenotypes. This new model offers researchers an unlimited source of cells for studying viral biology. Supported by ORIP (R01OD034046, S10OD021601), NIAID, NIDA, NIGMS, and NHLBI.
Targeting Pancreatic Cancer Metabolic Dependencies Through Glutamine Antagonism
Encarnación-Rosado et al., Nature Cancer. 2024.
https://pubmed.ncbi.nlm.nih.gov/37814010/
Pancreatic ductal adenocarcinoma (PDAC) cells thrive in the austere, complex tumor microenvironment by reprogramming their metabolism and relying on scavenging pathways, but more work is needed to translate this knowledge into clinically relevant therapeutic interventions. Investigators demonstrated that treating PDAC cells with a Gln antagonist, 6‑diazo-5-oxo-l-norleucine (DON), caused a metabolic crisis by globally impairing Gln metabolism, resulting in a significant decrease in proliferation. They observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. Combining this therapeutic with an extracellular-signal-regulated kinase (or ERK) signaling pathway inhibitor could further improve it. Supported by ORIP (S10OD021747), NCI, and NIAID.
Plasticity of Intragraft Alloreactive T Cell Clones in Human Gut Correlates With Transplant Outcomes
Fu et al., Journal of Experimental Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38091025/
This study provides novel insights into tissue-resident memory T-cell (TRM) biology. The authors performed single-cell immune profiling to integrate clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa after transplantation. They found that preexisting host-versus-graft (HvG)–reactive T cells were heterogenous and identified a trajectory from TRM to effector T/TRM profiles for rejection and dominant TRM profiles with tolerance in the quiescent allografts. Putative de novo HvG-reactive T cells showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Analysis of the inferred protein regulon network revealed upstream regulons for alloreactive T-cell tolerance and effector functions, opening opportunities for future translational studies to induce immune tolerance and overcome rejection. Supported by ORIP (S10OD020056) and NIAID.
The Impact of SIV-Induced Immunodeficiency on Clinical Manifestation, Immune Response, and Viral Dynamics in SARS-CoV-2 Coinfection
Melton et al., bioRxiv. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680717/
The effects of immunodeficiency caused by chronic HIV infection on COVID-19 have not been directly addressed in a controlled setting. Investigators conducted a pilot study in which two pigtail macaques (PTMs) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and compared with SIV-naive PTMs infected with SARS-CoV-2. Despite the marked decrease in CD4+ T cells in the SIV-positive animals prior to exposure to SARS-CoV-2, investigators found that disease progression, viral persistence, and evolution of SARS-CoV-2 were comparable to the control group. These findings suggest that SIV-induced immunodeficiency alters the immune response to SARS-CoV-2 infection, leading to impaired cellular and humoral immunity. However, this impairment does not significantly alter the course of infection. Supported by ORIP (P51OD011104, U42OD013117, S10OD026800, S10OD030347) and NIAID.