Selected Grantee Publications
Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection
León et al., mBio. 2025.
https://pubmed.ncbi.nlm.nih.gov/39912630
Seasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin (HA) viral fusion protein. To support the further development of these stem-targeting vaccine candidates, researchers used negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals (male and female) who were exposed to influenza antigens through traditional vaccination or natural infection during the 2018–2019 flu season. Results demonstrated humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs found in both vaccinated and infected patients. Results from this study support the need for further characterization of protective responses toward conserved epitopes and provide a baseline for examining antibody responses. Supported by ORIP (K01OD036063) and NIAID.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Potent HPIV3-Neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity
Abu-Shmais et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38488511/
Human parainfluenza virus 3 fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing antibodies that inhibit infection. More work is needed to understand these dynamics. Researchers characterized the genetic signatures, epitope specificity, neutralization potential, and publicness of HPIV3-specific antibodies identified across multiple individuals. From this work, they identified 12 potently neutralizing antibodies targeting three nonoverlapping epitopes on HPIV3 F. Six of the antibodies used immunoglobulin heavy variable gene, IGHV 5-51. These antibodies used different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. These findings help elucidate the genetic and functional characteristics of HPIV3-neutralizing antibodies and indicate the existence of a reproducible H chain variable–dependent antibody response associated with VL and CDRH3 promiscuity. Supported by ORIP (K01OD036063), NCATS, NCI, NEI, NIAID, and NIDDK.
Deep Analysis of CD4 T Cells in the Rhesus CNS During SIV Infection
Elizaldi et al., PLOS Pathogens. 2023.
https://pubmed.ncbi.nlm.nih.gov/38060615/
Systemic HIV infection results in chronic inflammation that causes lasting damage to the central nervous system (CNS), despite long-term antiretroviral therapy (ART). Researchers studied neurocognitive outcomes in male and female rhesus macaques infected with simian immunodeficiency virus (SIV) using an ART regimen simulating suboptimal adherence; one group received no ART, and the other received ART with periodic interruptions. Using single-cell transcriptomic profiling, the researchers also identified molecular programs induced in the brain upon infection. They found that acute infection led to marked imbalance in the CNS CD4/CD8 T‑cell ratio, which persisted into the chronic phase. The studies provide insight into the role of CD4 T cells in the CNS during HIV infection. Supported by ORIP (P51OD011107, K01OD023034), NIA, NIAID, and NCI.
Conjugation of HIV-1 Envelope to Hepatitis B Surface Antigen Alters Vaccine Responses in Rhesus Macaques
Nettere et al., NPJ Vaccines. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673864/
Researchers are interested in developing an HIV-1 vaccine that improves upon the regimen used in the RV144 clinical trial. The authors tested the hypothesis that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T-cell help and improve antibody production against HIV-1. Using juvenile rhesus macaques of both sexes, they evaluated the immunogenicity of their conjugate regimen. Their findings suggest that conjugate vaccination can engage both HIV-1 Env– and hepatitis B surface antigen–specific Tcell help and modify antibody responses at early time points. This work may help inform future efforts to improve the durability and efficacy of next-generation HIV vaccines. Supported by ORIP (P51OD011107, K01OD024877) and NIAID.
HIV-1 Remission: Accelerating the Path to Permanent HIV-1 Silencing
Lyons et al., c. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10674359/
Current HIV treatment strategies are focused on forced proviral reactivation and elimination of reactivated cells with immunological or toxin-based technologies. Researchers have proposed the use of a novel “block-lock-stop” approach, which entails the long-term durable silencing of viral expression and permanent transcriptional deactivation of the latent provirus. In the present study, the authors present this approach and its rationale. More research is needed to understand the (1) epigenetic architecture of integrated provirus, (2) cell types and epigenetic cell states that favor viral rebound, (3) molecular functions of Tat (a protein that controls transcription of HIV) and host factors that prevent permanent silencing, (4) human endogenous retrovirus silencing in the genome, and (5) approaches to generate defective proviruses. Additionally, community engagement is crucial for this effort. Supported by ORIP (K01OD031900), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS.
Effect of Viral Strain and Host Age on Clinical Disease and Viral Replication in Immunocompetent Mouse Models of Chikungunya Encephalomyelitis
Anderson et al., Viruses. 2023.
https://pubmed.ncbi.nlm.nih.gov/37243143/
Chikungunya virus (CHIKV) is associated with neurologic complications, but studies in the central nervous system are challenging to perform in humans. Using a mouse model of both sexes, researchers established the relative severity of neurological disease across multiple stages of neurodevelopment in three strains of CHIKV. The disease was found to be strain dependent, with differences in severity of neurological disease, viral titers in the brain and spinal cord, and proinflammatory gene expression and CD4+ T cell infiltration in the brain. This work provides a mouse model for future studies of CHIKV pathogenesis and the host immune response. Supported by ORIP (K01OD026529), NIAID, and NCI.
Structural Insights Into the Broad Protection Against H1 Influenza Viruses by a Computationally Optimized Hemagglutinin Vaccine
Dzimianski et al., Communications Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37185989/
Influenza is an ongoing public health concern, and computationally optimized broadly reactive antigen (COBRA) hemagglutinin proteins represent a potential strategy for formulating broadly effective influenza vaccines. Researchers determined the crystal structure of COBRA P1, as well as its binding to 1F8, a broadly neutralizing antibody. This work provides valuable insights into the underlying molecular basis for the broad effectiveness of P1, and these insights can be applied to future vaccine designs. Supported by ORIP (K01OD026569), NIAID, and NIGMS.
Fc-Mediated Pan-Sarbecovirus Protection After Alphavirus Vector Vaccination
Adams et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37000623/
Group 2B β-coronaviruses (i.e., sarbecoviruses) have resulted in regional and global epidemics. Here, the authors evaluate the mechanisms of cross-sarbecovirus protective immunity using a panel of alphavirus-vectored vaccines covering bat to human strains. They reported that vaccination does not prevent virus replication, but it protects against lethal heterologous disease outcomes in SARS-CoV-2 and clade 2 bat sarbecovirus challenge models. Full-length spike vaccines elicited the broadest pan-sarbecovirus protection. Additionally, antibody-mediated cross-protection was lost in absence of FcR function, supporting a model for non-neutralizing, protective antibodies. Taken together, these findings highlight the value of universal sarbecovirus vaccine designs that couple FcR-mediated cross-protection with potent cross-neutralizing antibody responses. Supported by ORIP (K01OD026529), NIAID, and NCI.