Selected Grantee Publications
- Clear All
- 10 results found
- niaid
- Neurological
- 2023
Deep Analysis of CD4 T Cells in the Rhesus CNS During SIV Infection
Elizaldi et al., PLOS Pathogens. 2023.
https://pubmed.ncbi.nlm.nih.gov/38060615/
Systemic HIV infection results in chronic inflammation that causes lasting damage to the central nervous system (CNS), despite long-term antiretroviral therapy (ART). Researchers studied neurocognitive outcomes in male and female rhesus macaques infected with simian immunodeficiency virus (SIV) using an ART regimen simulating suboptimal adherence; one group received no ART, and the other received ART with periodic interruptions. Using single-cell transcriptomic profiling, the researchers also identified molecular programs induced in the brain upon infection. They found that acute infection led to marked imbalance in the CNS CD4/CD8 T‑cell ratio, which persisted into the chronic phase. The studies provide insight into the role of CD4 T cells in the CNS during HIV infection. Supported by ORIP (P51OD011107, K01OD023034), NIA, NIAID, and NCI.
Interferon Regulatory Factor 7 Modulates Virus Clearance and Immune Responses to Alphavirus Encephalomyelitis
Troisi et al., Journal of Virology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37772825/
Interferon regulatory factor 7 (IRF7)–deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7-/- mice produce low levels of IFN-α but high levels of IFN-β with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7-/- mice developed inflammation earlier but failed to clear virus from motor neuron–rich regions of the brainstem and spinal cord. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance. Supported by ORIP (T32OD011089, R01OD01026529) NINDS, and NIAID.
Downregulation of CCR5 on Brain Perivascular Macrophages in Simian Immunodeficiency Virus–Infected Rhesus Macaques
Bollimpelli et al., Nature Communications. 2023.
https://www.doi.org/10.1038/s41467-023-40430-7
Researchers have been exploring multiple strategies to develop an HIV vaccine. In this study, the investigators determined the immunogenicity and efficacy of intradermal and intramuscular routes of modified vaccinia Ankara (MVA) vaccination in female rhesus macaques. They found that both routes of MVA vaccination enabled control of viral replication, but only the intradermal vaccination was effective in protection against viral acquisition. Their findings suggest that the intradermal MVA vaccinations provide protection by modulating the innate and T helper responses. Taken together, this work underscores the importance of testing the influence of the route of immunization for HIV vaccines in humans. Supported by ORIP (P51OD011132, R24OD010976) and NIAID.
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
Brain Microglia Serve as a Persistent HIV Reservoir Despite Durable Antiretroviral Therapy
Tang et al., The Journal of Clinical Investigation. 2023.
https://www.doi.org/10.1172/JCI167417
Brain microglia are likely to play a role in rebound viremia following the cessation of antiretroviral therapy, but more work is needed to fully understand HIV persistence in the central nervous system (CNS). The investigators developed a protocol to isolate highly pure populations of brain myeloid cells and microglia from the tissues of male rhesus macaques, as well as from rapid autopsies of men and women with HIV. Their observations support the concept that brain microglia are a stable reservoir of quiescent infection. Thus, this work provides a physiologically relevant platform for studies of the biology of CNS reservoirs. Supported by ORIP (P51OD011132), NIAID, and NIMH.
Innate Lymphoid Cells and Interferons Limit Neurologic and Articular Complications of Brucellosis
Moley et al., American Journal of Pathology. 2023.
https://www.sciencedirect.com/science/article/pii/S0002944023001980?via%3Dihub=
Brucellosis is a globally significant zoonotic disease. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. Following pulmonary infection with B. melitensis, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Transcriptional analysis of Brucella-infected brains revealed marked upregulation of genes associated with inflammation and interferon responses. Collectively, these findings indicate that ILCs and interferons play an important role in prevention of focal complications during Brucella infection and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis. Supported by ORIP (T32OD011126) and NIAID.
Infection of the Maternal–Fetal Interface and Vertical Transmission Following Low-Dose Inoculation of Pregnant Rhesus Macaques (Macaca mulatta) with an African-Lineage Zika Virus
Koenig et al., PLOS ONE. 2023.
https://doi.org/10.1371/journal.pone.0284964
Researchers examined transmission of Zika virus to nonhuman primate fetuses during pregnancy. Even with a low dosage of inoculation of the dams, the investigators found that the Zika virus infected fetuses, despite the presence of a “placental fortress,” which normally protects fetuses during gestation. This transmission illustrates the high level of infectivity threat that Zika poses, which may increase if mosquitoes expand their global habitats. Understanding how Zika breaches the placental barrier will help researchers develop strategies to prevent fetal infection during pregnancy and thereby prevent adverse outcomes, such as brain malformation defects. Supported by ORIP (P51OD011106, S10OD023526), NIAID, NCI, and NIGMS.
Effect of Viral Strain and Host Age on Clinical Disease and Viral Replication in Immunocompetent Mouse Models of Chikungunya Encephalomyelitis
Anderson et al., Viruses. 2023.
https://pubmed.ncbi.nlm.nih.gov/37243143/
Chikungunya virus (CHIKV) is associated with neurologic complications, but studies in the central nervous system are challenging to perform in humans. Using a mouse model of both sexes, researchers established the relative severity of neurological disease across multiple stages of neurodevelopment in three strains of CHIKV. The disease was found to be strain dependent, with differences in severity of neurological disease, viral titers in the brain and spinal cord, and proinflammatory gene expression and CD4+ T cell infiltration in the brain. This work provides a mouse model for future studies of CHIKV pathogenesis and the host immune response. Supported by ORIP (K01OD026529), NIAID, and NCI.
Chronic Immune Activation and Gut Barrier Dysfunction Is Associated with Neuroinflammation in ART-Suppressed SIV+ Rhesus Macaques
Byrnes et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085024/
About 40% of people with HIV develop neurocognitive disorders, potentially resulting from persistent infection in the brain and neuroinflammation. Investigators characterized the central nervous system reservoir and immune environment of simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes during acute, chronic, or antiretroviral therapy (ART)–suppressed infection. They reported that neuroinflammation and blood–brain barrier dysfunction correlated with viremia and immune activation in the gut. Their findings suggest that gastrointestinal tract damage can contribute to neuroimmune activation and inflammation, even in the absence of SIV or HIV infection. This work also has implications for other neurological disorders where chronic inflammation is associated with pathogenesis. Supported by ORIP (P51OD011132, P51OD011092, U42OD011023, R24OD010445), NIAID, NCI, and NIMH.
Cannabinoids Modulate the Microbiota–Gut–Brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis while Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels
McDew-White et al., Journal of Neuroinflammation. 2023.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02729-6
Chronic neuroinflammation is thought to be a significant contributor to HIV-associated neurocognitive disorders. Using rhesus macaques of both sexes, researchers investigated the effects of simian immunodeficiency virus (SIV) infection on the microbiota–gut–brain axis (MGBA), as well as the use of low-dose cannabinoids to reverse MGBA dysregulation. They reported that tetrahydrocannabinol reduced neuroinflammation and dysbiosis and increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid, and indole-3-propionate levels. This study offers a potential strategy to promote brain health in people with HIV. Supported by ORIP (P51OD011104, P51OD011103), NIAID, and NIDA.