Selected Grantee Publications
- Clear All
- 189 results found
- niaid
- Immunology
Trade-Offs Shaping Transmission of Sylvatic Dengue and Zika Viruses in Monkey Hosts
Hanley et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38538621/
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into neotropical sylvatic cycles. This article reports that the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. The data revealed evidence of an immunologically mediated trade‑off between duration and magnitude of virus replication, as higher-peak ZIKV titers are associated with shorter durations of viremia, and higher natural killer cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas. Supported by ORIP (P40OD010938) and NIAID.
Pigs in Transplantation Research and Their Potential as Sources of Organs in Clinical Xenotransplantation
Raza et al., Comparative Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38359908/
The pig has now gained importance as a potential source of organs for clinical xenotransplantation. When an organ from a wild-type (i.e., genetically unmodified) pig is transplanted into an immunosuppressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This response has been largely overcome by (1) extensive gene editing of the organ-source pig and (2) administration to the recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T-cell costimulation pathway. The combination of gene editing and novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 year and of pig heart survival to up to 9 months. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions. Supported by ORIP (P40OD024628) and NIAID.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.
Cytomegalovirus Infection Facilitates the Costimulation of CD57+CD28- CD8 T Cells in HIV Infection and Atherosclerosis via the CD2–LFA-3 Axis
Winchester et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38047900/
People with HIV are at increased risk of developing atherosclerosis and other cardiovascular diseases, and HIV coinfection with cytomegalovirus (CMV) is associated with immune activation and inflammation. In this study, researchers explored the role of the CD2–LFA-3 axis in driving activation and proliferation of CD57+CD28- CD8 T cells using clinical samples from patients with or without HIV. They propose a model in which CMV infection is linked to enhanced CD2 expression on the T cells, enabling the activation via LFA-3 signals and potentially leading to cardiopathogenic interactions with vascular endothelial cells that express LFA-3. This work provides a potential therapeutic target in atherosclerosis development and progression, especially for people with HIV. Supported by ORIP (P51OD011132, U24OD011023) and NIAID.
Single-Component Multilayered Self-Assembling Protein Nanoparticles Presenting Glycan-Trimmed Uncleaved Prefusion Optimized Envelope Trimers as HIV-1 Vaccine Candidates
Zhang, Nature Communications. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082823/
Researchers are interested in engineering protein nanoparticles to mimic virus-like particles for an HIV-1 vaccine. In this study, researchers explored a strategy that combines HIV envelope glycoprotein (Env) stabilization, nanoparticle display, and glycan trimming. They designed a panel of constructs for biochemical, biophysical, and structural characterization. Using female mice, female rabbits, and rhesus macaques of both sexes, they demonstrated that glycan trimming increases the frequency of vaccine responders and steers antibody responses away from immunodominant glycan holes and glycan patches. This work offers a potential strategy for overcoming the challenges posed by the Env glycan shield in vaccine development. Supported by ORIP (P51OD011133, P51OD011104, U42OD010442) and NIAID.
Deep Analysis of CD4 T Cells in the Rhesus CNS During SIV Infection
Elizaldi et al., PLOS Pathogens. 2023.
https://pubmed.ncbi.nlm.nih.gov/38060615/
Systemic HIV infection results in chronic inflammation that causes lasting damage to the central nervous system (CNS), despite long-term antiretroviral therapy (ART). Researchers studied neurocognitive outcomes in male and female rhesus macaques infected with simian immunodeficiency virus (SIV) using an ART regimen simulating suboptimal adherence; one group received no ART, and the other received ART with periodic interruptions. Using single-cell transcriptomic profiling, the researchers also identified molecular programs induced in the brain upon infection. They found that acute infection led to marked imbalance in the CNS CD4/CD8 T‑cell ratio, which persisted into the chronic phase. The studies provide insight into the role of CD4 T cells in the CNS during HIV infection. Supported by ORIP (P51OD011107, K01OD023034), NIA, NIAID, and NCI.
Cholera Toxin B Scaffolded, Focused SIV V2 Epitope Elicits Antibodies That Influence the Risk of SIVmac251 Acquisition in Macaques
Rahman et al., Frontiers in Immunology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37153584/
Previous work has indicated that the production of antibodies against epitopes in the V2 loop of gp120—a protein component of the viral spikes used to infiltrate host cells—correlates with protection from viral acquisition. Researchers assessed the efficacy of a simian immunodeficiency virus (SIV) vaccine consisting of a V2c epitope scaffolded onto cholera toxin B in rhesus macaques of both sexes. Immunized animals generated V2c-specific antibody responses, and differences in the functional antibody and immune cell responses were observed and compared with responses in a historically protective vaccine regimen. Different responses also were observed when varying adjuvants were administered with the vaccines. Thus, full protection against SIV infection might require vaccines against multiple spike epitopes. Supported by ORIP (P51OD011104, R24OD010976) and NIAID.
Simian Immunodeficiency Virus and Storage Buffer: Field-Friendly Preservation Methods for RNA Viral Detection in Primate Feces
Wilde et al., mSphere. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732032/
Simian immunodeficiency virus (SIV) infects more than 40 nonhuman primate (NHP) species in sub-Saharan Africa, but testing in wild NHP populations can be challenging. Researchers compared methods for SIV RNA preservation and recovery from NHP fecal samples stored in four different buffers. The goal of this work was to identify a robust “field-friendly” method (i.e., without freezing or refrigeration) for this effort, and the samples were collected from a mantled guereza colobus housed at the Columbus Zoo and Aquarium. The authors reported that the DNA/RNA shield is an optimal buffer for preserving SIV RNA in fecal samples in the field. Their findings will inform future fieldwork and facilitate improved approaches for studies of SIV and other RNA viruses. Supported by ORIP (P51OD011132) and NIAID.
Antiretroviral Therapy Reveals Triphasic Decay of Intact SIV Genomes and Persistence of Ancestral Variants
Fray et al., Cell Host & Microbe. 2023.
https://doi.org/10.1016/j.chom.2023.01.016
Antiretroviral therapy (ART) halts HIV-1 replication but is not curative; a pool of latently infected CD4+ T cells persists, and viremia rapidly rebounds if ART is stopped. Using an intact proviral DNA assay, researchers characterized quantitative and qualitative changes in CD4+ T cells for 4 years following ART initiation in rhesus macaques of both sexes. They found that viruses replicating at ART initiation had mutations conferring antibody escape, and sequences with large numbers of antibody escape mutations became less abundant at later time points. Together, these findings reveal that the population of simian immunodeficiency virus (SIV)–infected CD4+ T cells is dynamic and provide a framework for evaluating and interpreting intervention trials. Supported by ORIP (R01OD011095), NIAID, and NIDCR.
IL-21-IgFc Immunotherapy Alters Transcriptional Landscape of Lymph Node Cells Leading to Enhanced Flu Vaccine Response in Aging and SIV Infection
Pallikkuth et al., Aging Cell. 2023.
https://pubmed.ncbi.nlm.nih.gov/37712598/
Aging is associated with increased risk of seasonal flu disease burden and serious flu-related complications, particularly for people with HIV. In this study, investigators aimed to elucidate the immunomodulation following flu vaccination in aging male and female rhesus macaques infected with simian immunodeficiency virus (SIV). Their results suggest that IL-21 treatment at the time of flu vaccination modulates the inductive lymph node germinal center activity to reverse SIV-associated immune dysfunction. The authors identified IL-21 as a potential candidate molecule for immunotherapy to enhance flu vaccine responses in affected populations. Further studies could examine the overall benefit of IL-21 immunotherapy on mucosal lung immunity and protection against infection. Supported by ORIP (R24OD010947), NIA, and NIAID.