Selected Grantee Publications
- Clear All
- 32 results found
- niaid
- ninds
- Microscopy
Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection
León et al., mBio. 2025.
https://pubmed.ncbi.nlm.nih.gov/39912630
Seasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin (HA) viral fusion protein. To support the further development of these stem-targeting vaccine candidates, researchers used negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals (male and female) who were exposed to influenza antigens through traditional vaccination or natural infection during the 2018–2019 flu season. Results demonstrated humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs found in both vaccinated and infected patients. Results from this study support the need for further characterization of protective responses toward conserved epitopes and provide a baseline for examining antibody responses. Supported by ORIP (K01OD036063) and NIAID.
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
Senescent-like Microglia Limit Remyelination Through the Senescence Associated Secretory Phenotype
Gross et al., Nature Communications. 2025.
https://www.nature.com/articles/s41467-025-57632-w
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease in which immune cells infiltrate the central nervous system and promote deterioration of myelin and neurodegeneration. The capacity to regenerate myelin in the central nervous system diminishes with age. In this study, researchers used 2- to 3-month-old (young), 12-month-old (middle-aged), and 18- to 22-month-old (aged) C57BL/6 male and female mice. Results showed an upregulation of the senescence marker P16ink4a (P16) in microglial and macrophage cells within demyelinated lesions. Notably, treatment of senescent cells using genetic and pharmacological senolytic methods leads to enhanced remyelination in young and middle-aged mice but fails to improve remyelination in aged mice. These results suggest that therapeutic targeting of senescence-associated secretory phenotype components may improve remyelination in aging and MS. Supported by ORIP (R24OD036199), NIA, NINDS, and NIMH.
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
The Buoyancy of Cryptococcal Cells and Its Implications for Transport and Persistence of Cryptococcus in Aqueous Environments
Jimenez et al., mSphere. 2024.
https://pubmed.ncbi.nlm.nih.gov/39601568/
Cryptococcosis is a major fungal pathogen that causes life-threatening infections. Researchers discovered that Cryptococcus has unique buoyancy properties that help with its survival and spread through water transport. This study explores how these fungal cells remain suspended in liquid, potentially enhancing their ability to survive in their surroundings and infect new hosts. Understanding the role of cellular buoyancy in Cryptococcus transport could improve strategies to prevent spread in aqueous settings, offering new insights into fungal infection risks. Supported by ORIP (T32OD011089), NIAID, and NHLBI.
Potent Broadly Neutralizing Antibodies Mediate Efficient Antibody-Dependent Phagocytosis of HIV-Infected Cells
Snow et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/39466835
This study investigates the role of potent broadly neutralizing antibodies (bNAbs) in mediating antibody-dependent cellular phagocytosis (ADCP) of HIV-infected cells. Researchers developed a novel cell-based approach to assess the ADCP of HIV-infected cells expressing natural conformations of the viral envelope glycoprotein, which allows the virus to infect a host cell. The findings in this study demonstrate that bNAbs facilitate efficient ADCP, highlighting their potential in controlling HIV infection by promoting immune clearance of infected cells. This study provides valuable insights into antibody-mediated immune mechanisms and supports the development of antibody-based therapies and vaccines targeting HIV. Supported by ORIP (P51OD011106) and NIAID.