Selected Grantee Publications
- Clear All
- 201 results found
- niaid
- nigms
- Immunology
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Failure of Colonization Following Gut Microbiota Transfer Exacerbates DSS-Induced Colitis
Gustafson et al., Gut Microbes. 2025.
https://pubmed.ncbi.nlm.nih.gov/39812347/
Microorganisms that inhabit the gastrointestinal tract, known as the gut microbiome (GM), play a vital role in health and disease. Dysbiosis, the reduced richness of symbiotic commensals in the GM, exacerbates inflammation and increases inflammatory bowel disease (IBD) severity. Researchers used a mouse model for IBD to determine the role of GM composition, richness, and transfer methods on IBD disease severity. A comparison of GM transfer methods demonstrated that co-housing was not as efficient as embryonic transfer and cross-fostering. The GM of the donor and recipient during co-housing determined transfer efficiency. Transfer of a low richness GM to a recipient with high GM richness, followed by dextran sodium sulfate administration to induce IBD, resulted in significant weight loss, greater lesion severity, increased inflammatory response, and higher mortality rates. This study provides evidence regarding the role of GM composition and colonization in IBD modulation. Supported by ORIP (T32OD011126, U42OD010918) and NIGMS.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Immune Restoration by TIGIT Blockade is Insufficient to Control Chronic SIV Infection
Webb et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38775481/
T-cell exhaustion from prolonged upregulation of immune checkpoint receptors (ICR) contributes to immune dysfunction and viral persistence of both human and simian immunodeficiency virus (HIV/SIV) infection. Previous in vitro research has demonstrated the potential use of ICR blockade as a therapeutic. Researchers used a monoclonal antibody targeting humanized T cell immunoreceptor with Ig and ITIM domain (TIGIT) in male and female cynomolgus macaque and female rhesus macaque SIV models, 4–14 years of age. TIGIT blockade was well tolerated, with moderately increased proliferation of T cells and natural killer cells, but a reduction in plasma viral load was not observed. Future research to eliminate SIV should combine ICR blockades with other immunotherapies. Supported by ORIP (P51OD011092), NIAID, and NIMH.
Elevated Inflammation Associated With Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques
Nemphos et al., Viruses. 2024.
https://pubmed.ncbi.nlm.nih.gov/39066199/
Because of geographic overlap, a high potential exists for co-infection with HIV and malaria caused by Plasmodium fragile. Meta-analysis of data collected from 1991 to 2018 demonstrated co-incidence of these two infections to be 43%. Researchers used a male rhesus macaque (RM) model, 6–12 years of age, coinfected with P. fragile and antiretroviral (ART)-treated simian immunodeficiency virus (SIV) to mimic HIV/malaria co-infection observed in patients. ART-treated co-infected RMs demonstrated increased levels of inflammatory cytokines, shifts in neutrophil function, and gastrointestinal mucosal dysfunction. This model may be used to study molecular mechanisms of disease pathology and novel therapies, such as neutrophil-targeted interventions, for patients experiencing co-infection. Supported by ORIP (U42OD010568, U42OD024282, P51OD011104, R21OD031435) and NIGMS.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.
SIV-Specific Antibodies Protect Against Inflammasome-Driven Encephalitis in Untreated Macaques
Castell et al., Cell Reports. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11552693
Viral infections are the most common infectious cause of encephalitis, and simian immunodeficiency virus (SIV)–infected macaques are a well-established model for HIV. Researchers investigated the protective effects of SIV-specific antibodies against inflammation-driven encephalitis in using untreated, SIV-infected, male and female pigtail and rhesus macaques. Findings indicate that these antibodies reduce neuroinflammation and encephalitis, highlighting the importance of antibodies in controlling neuroimmune responses, especially in the absence of antiretroviral therapy. This study provides insight into immune-modulatory approaches to combating inflammation-driven encephalopathies. Supported by ORIP (U42OD013117, T32OD011089), NIDA, NHLBI, NIAID, NINDS, and NIMH.