Selected Grantee Publications
- Clear All
- 150 results found
- niaid
- niddk
- Vaccines/Therapeutics
Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection
León et al., mBio. 2025.
https://pubmed.ncbi.nlm.nih.gov/39912630
Seasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin (HA) viral fusion protein. To support the further development of these stem-targeting vaccine candidates, researchers used negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals (male and female) who were exposed to influenza antigens through traditional vaccination or natural infection during the 2018–2019 flu season. Results demonstrated humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs found in both vaccinated and infected patients. Results from this study support the need for further characterization of protective responses toward conserved epitopes and provide a baseline for examining antibody responses. Supported by ORIP (K01OD036063) and NIAID.
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
A Comprehensive Atlas of AAV Tropism in the Mouse
Walkey et al., Molecular Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39863928
Over the past three decades, adeno-associated viruses (AAVs) have emerged as the leading viral vector for in vivo gene therapy. This study presents a comprehensive atlas of AAV tropism in male and female mice, evaluating 10 naturally occurring AAV serotypes across 22 tissues using systemic delivery. Researchers employed a fluorescent protein activation approach to visualize AAV transduction patterns and detected transduction of unexpected tissues, including in adrenal glands, testes, and ovaries. Biodistribution closely matched the fluorescent signal intensity. This publicly available data set provides valuable insights into AAV vector targeting and supports optimal serotype selection for basic research and preclinical gene therapy applications in murine models. Supported by ORIP (U42OD026645, U42OD035581, U42OD026635), NCI, NHLBI, NICHD, and NIDDK.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
Indoleamine-2,3-Dioxygenase Inhibition Improves Immunity and Is Safe for Concurrent Use with cART During Mtb/SIV Coinfection
Singh et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39114981/
HIV and tuberculosis (TB) coinfection can lead to TB reactivation that is caused by chronic immune system activation. Researchers explored indoleamine-2,3-dioxygenase (IDO) inhibition as a host-directed therapy (HDT) to mitigate immune suppression and TB reactivation in a rhesus macaque Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) model. The IDO inhibitor D-1-methyl tryptophan improved T-cell immunity, reduced tissue damage, and controlled TB-related inflammation without interfering with the efficacy of combinatorial antiretroviral therapy (cART). These findings support IDO inhibition as a potential HDT in HIV/TB coinfection, providing a strategy to balance immune control while preventing TB reactivation in cART-treated patients. Supported by ORIP (S10OD028732, U42OD010442, S10OD028653) and NIAID.
Immune Restoration by TIGIT Blockade is Insufficient to Control Chronic SIV Infection
Webb et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38775481/
T-cell exhaustion from prolonged upregulation of immune checkpoint receptors (ICR) contributes to immune dysfunction and viral persistence of both human and simian immunodeficiency virus (HIV/SIV) infection. Previous in vitro research has demonstrated the potential use of ICR blockade as a therapeutic. Researchers used a monoclonal antibody targeting humanized T cell immunoreceptor with Ig and ITIM domain (TIGIT) in male and female cynomolgus macaque and female rhesus macaque SIV models, 4–14 years of age. TIGIT blockade was well tolerated, with moderately increased proliferation of T cells and natural killer cells, but a reduction in plasma viral load was not observed. Future research to eliminate SIV should combine ICR blockades with other immunotherapies. Supported by ORIP (P51OD011092), NIAID, and NIMH.
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
Potent Broadly Neutralizing Antibodies Mediate Efficient Antibody-Dependent Phagocytosis of HIV-Infected Cells
Snow et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/39466835
This study investigates the role of potent broadly neutralizing antibodies (bNAbs) in mediating antibody-dependent cellular phagocytosis (ADCP) of HIV-infected cells. Researchers developed a novel cell-based approach to assess the ADCP of HIV-infected cells expressing natural conformations of the viral envelope glycoprotein, which allows the virus to infect a host cell. The findings in this study demonstrate that bNAbs facilitate efficient ADCP, highlighting their potential in controlling HIV infection by promoting immune clearance of infected cells. This study provides valuable insights into antibody-mediated immune mechanisms and supports the development of antibody-based therapies and vaccines targeting HIV. Supported by ORIP (P51OD011106) and NIAID.