Selected Grantee Publications
Effect of Single Housing on Innate Immune Activation in Immunodeficiency Virus–Infected Pigtail Macaques (Macaca nemestrina) as a Model of Psychosocial Stress in Acute HIV Infection
Castell et al., Psychosomatic Medicine. 2022.
https://www.doi.org/10.1097/PSY.0000000000001132
Psychosocial stress is associated with immune system dysregulation and worsened clinical outcomes in people with HIV. Investigators performed a retrospective analysis of acute simian immunodeficiency virus (SIV) infection of male pigtail macaques to compare the innate immune responses of social and single housing. The singly housed macaques showed reduced expansion of classical and intermediate monocytes, prolonged thrombocytopenia, and suppression of platelet activation during the first 2 weeks after inoculation. These findings indicate that psychosocial stress might induce clinically significant immunomodulatory effects in the innate immune system during acute SIV infection. Supported by ORIP (P40OD013117, K01OD018244, T32OD011089, U42OD013117), NIAID, NIMH, and NINDS.
System-Wide Identification of Myeloid Markers of TB Disease and HIV-Induced Reactivation in the Macaque Model of Mtb Infection and Mtb/SIV Co-Infection
Gough et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.777733
HIV is known to catalyze the reactivation of latent tuberculosis (TB) infection. The investigators characterized Mycobacterium tuberculosis (Mtb) and simian immunodeficiency virus (SIV) coinfection using a rhesus macaque model of both sexes, with a focus on pathways relevant to myeloid origin cells (e.g., macrophages). They identified gene signatures of host disease state and progression, as well as clustering algorithms for differentiation between host disease states and relationships among genes. The gene signatures were associated with pathways relevant to apoptosis, adenosine triphosphate production, phagocytosis, cell migration, and type I interferon, which are related to macrophage function. Collectively, these findings suggest that novel macrophage functions influence Mtb infection both with and without SIV coinfection. Supported by ORIP (P51OD011104, P51OD011103, U42OD010442) and NIAID.
Orthotopic Transplantation of the Full-Length Porcine Intestine After Normothermic Machine Perfusion
Abraham et al., Transplantation Direct. 2022.
https://www.doi.org/10.1097/TXD.0000000000001390
Successful intestinal transplantation currently is hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation could expand transplantable graft numbers and enhance post-transplant outcomes. Superior transplant outcomes recently have been demonstrated in clinical trials using machine perfusion to preserve the liver. The investigators report the development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model. Supported by ORIP (K01OD019911), NIAID, and NIDDK.
Control of Simian Immunodeficiency Virus Infection in Prophylactically Vaccinated, Antiretroviral Treatment–Naive Macaques Is Required for the Most Efficacious CD8 T Cell Response during Treatment with the Interleukin-15 Superagonist N-803
Ellis-Connell et al., Journal of Virology. 2022.
https://www.doi.org/10.1128/jvi.01185-22
Recent evidence suggests that immunotherapeutic agents, such as N-803, could improve the ability of CD8+ T cells to target and destroy cells infected with HIV. In this study, investigators defined the features that are associated with N-803-mediated suppression of simian immunodeficiency virus (SIV) replication in rhesus macaques of both sexes. They hypothesized that preexisting vaccine-elicited CD8+ T cells were required for suppressing replication. Their results indicate that N-803 is most effective in animals with preexisting immunological ability to control SIV replication. These findings support further exploration of N-803 as an immunotherapeutic agent for HIV. Supported by ORIP (P51OD011106) and NIAID.
Neuroinflammatory Transcriptional Programs Induced in Rhesus Pre‑Frontal Cortex White Matter During Acute SHIV Infection
Hawes et al., Journal of Neuroinflammation. 2022.
https://www.doi.org/10.1186/s12974-022-02610-y
Neuroinflammation has evolved as a protective immune response within the central nervous system (CNS), but chronic neuroinflammation leads to oxidative stress, cellular damage, and neurodegeneration. People living with HIV are at increased risk for age-related neurodegenerative diseases. Using rhesus macaques of both sexes, the researchers characterized the molecular underpinnings of acute neuroinflammation following simian–human immunodeficiency virus (SHIV) infection. Viral entry and integration within the CNS demonstrated vulnerabilities of key cognitive and motor function brain regions during the acute phase of infection. SHIV-induced transcriptional alterations also were observed. These findings indicate the presence of pervasive immune surveillance at homeostasis and reveal key perturbations during infection. Supported by ORIP (S10OD010786, K01OD023034) and NIAID.
Distinct Sensitivities to SARS-CoV-2 Variants in Vaccinated Humans and Mice
Walls et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111299
Emergence of SARS-CoV-2 variants necessitates real-time evaluation of their impact on serum neutralizing activity, as a proxy for vaccine efficacy, to inform public health policies and guide vaccine development. The investigators report that vaccinated female BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses toward the SARS-CoV-2 Beta and Gamma variants of concern, compared with humans of both sexes and male nonhuman primates (i.e., rhesus and pigtail macaques). This finding was consistent across several vaccine modalities, doses, antigens, and assays, suggesting caution should be exercised when interpreting serum neutralizing data obtained from mice. Supported by ORIP (P51OD010425, U42OD011123) and NIAID.
Molecular Insights Into Antibody-Mediated Protection Against the Prototypic Simian Immunodeficiency Virus
Zhao et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32783-2
Most simian immunodeficiency virus (SIV) vaccines have focused on inducing T cell responses alone or in combination with non-neutralizing antibody responses. To date, studies investigating neutralizing antibody (nAb) responses to protect against SIV have been limited. In this study, researchers isolated 12 potent monoclonal nAbs from chronically infected rhesus macaques of both sexes and mapped their binding specificities on the envelope trimer structure. They further characterized the structures using cryogenic electron microscopy, mass spectrometry, and computational modeling. Their findings indicate that, in the case of humoral immunity, nAb activity is necessary and sufficient for protection against SIV challenge. This work provides structural insights for future vaccine design. Supported by ORIP (P51OD011106), NIAID, and NCI.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Wastewater Sequencing Reveals Early Cryptic SARS-CoV-2 Variant Transmission
Karthikeyan et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-05049-6
The investigators explored the use of SARS-CoV-2 RNA concentration in wastewater as a practical approach to estimate community prevalence of COVID-19, detect emerging variants, and track regional infection dynamics. Two obstacles must be overcome to leverage wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. The investigators developed and deployed improved virus concentration protocols and deconvolution software to fully resolve multiple virus strains from wastewater. Results indicate that emerging variants of concern were detected up to 14 days earlier in wastewater samples, and multiple instances of virus spread that were not captured by clinical genomic surveillance were identified by wastewater-based genomic surveillance. The study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission. The work suggests a critical, urgently needed methodology for early detection of emerging variants and early public health interventions. Supported by ORIP (S10OD026929), and NIAID.