Selected Grantee Publications
- Clear All
- 5 results found
- nia
- Imaging
- Spectrometry
Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease
Uh et al., Journal of Alzheimer's Disease. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177593/
This study explored the effects of presenilin 1 (PSEN1) disruption on vertebral malformations in male and female PSEN1 mutant pigs. Researchers observed significant skeletal impairments and early deaths in pigs with a PSEN1 null mutation, mirroring phenotypes seen in mouse models of Alzheimer’s disease (AD). This porcine model provides valuable insights into pathological hallmarks of PSEN1 mutations in AD, offering a robust platform of therapeutic exploration. The findings establish pigs as an essential translational model for AD, enabling advanced studies on pathophysiology and treatment development for human skeletal and neurological conditions. Supported by ORIP (U42OD011140), NHLBI, NIA, NIAID.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography
Coughlan et al., JAMA Neurology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37010830/
To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability. This study suggests female individuals with these conditions may be at higher risk of pathological burden. Supported by ORIP (S10OD025245), NIA, and NICHD.
SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19
Beckman et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111573
SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes. The researchers found that in aged monkeys, SARS-CoV-2 traveled farther along nerve pathways to regions associated with Alzheimer's disease. Supported by ORIP (P51OD011107) and NIA.
Innate Immunity Stimulation via CpG Oligodeoxynucleotides Ameliorates Alzheimer’s Disease Pathology in Aged Squirrel Monkeys
Patel et al., Brain: A Journal of Neurology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34128045/
Alzheimer's disease is the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The authors have shown in transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA). They used a nonhuman primate model for sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. They demonstrate that long-term use of Class B CpG ODN 2006 induces a favorable degree of innate immunity stimulation. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. This evidence together with their earlier research validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach. Supported by ORIP (P40OD010938), NINDS, NIA, and NCI.