Selected Grantee Publications
A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis
Beckman et al., Alzheimer’s & Dementia. 2021.
https://pubmed.ncbi.nlm.nih.gov/33734581/
Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Researchers developed a rhesus monkey model of AD by targeting the entorhinal cortex with an adeno-associated virus expressing mutant tau protein. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Treated monkeys developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood. These results highlight the initial stages of tau seeding and propagation in rhesus macaques, a potentially powerful translational model with which to test new AD therapies. Supported by ORIP (P51OD011107) and NIA.
A Chromosome-Level Genome of Astyanax mexicanus Surface Fish for Comparing Population-Specific Genetic Differences Contributing to Trait Evolution
Warren et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33664263/
Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic (morphological adaptation of an animal to living in the constant darkness of caves) traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Warren et al. present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, they performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss (dusp26). They also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species. Supported by ORIP (R24OD011198), NIA, NICHD, NIGMS, amd NIDCR.
Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity Ex Vivo and In Vivo
Gramatica et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.02393-20
Activation of latent HIV-1 expression could benefit many HIV cure strategies. Researchers evaluated two AKT/mTOR activators, SB-216763 and tideglusib, as a potential new class of LRAs. The drugs reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy without causing T cell activation or impaired effector function of cytotoxic T lymphocytes or NK cells. When tested in vivo in monkeys, tideglusib showed unfavorable pharmacodynamic properties and did not reverse SIV latency. The discordance between the ex vivo and in vivo results underscores the importance of developing novel LRAs that allow systemic drug delivery to relevant anatomical compartments. Supported by ORIP (P51OD011092), NIAID, NIGMS, NIMH, and NCI.
Germline Transmission of Donor, Maternal and Paternal mtDNA in Primates
Ma et al., Human Reproduction. 2021.
https://doi.org/10.1016/j.immuni.2021.02.001
Mitochondrial gene mutations contribute to incurable human disorders. The possibility of using mitochondrial replacement therapy (MRT) to prevent transmission of pathogenic mitochondrial (mt)DNA was explored in rhesus macaques. Development of spindle MRT transfer in oocytes in 5 female rhesus macaques resulted in healthy and fertile offspring. These results demonstrate that MRT is compatible with normal postnatal development, including overall health and reproductive fitness in nonhuman primates with no detected adverse effects. Additional research is needed to more fully explore the use of MRT to prevent disorders as this study had a limited number of animals with only one female offspring. Supported by ORIP (P51OD0092) and NIA.
Sequence Diversity Analyses of an Improved Rhesus Macaque Genome Enhance its Biomedical Utility
Warren et al., Science. 2020.
https://science.sciencemag.org/content/370/6523/eabc6617
Investigators sequenced and assembled an Indian-origin female rhesus macaque (RM) genome using a multiplatform genomics approach that included long-read sequencing, extensive manual curation, and experimental validation to generate a new comprehensive annotated reference genome. As a result, 99.7% of the gaps in the earlier draft genome are now closed, and more than 99% of the genes are represented. Whole-genome sequencing of 853 RMs of both sexes identified 85.7 million single-nucleotide variants and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay. The improved assembly of segmental duplications, new lineage-specific genes and expanded gene families provide a framework for developing noninvasive NHP models for human disease, as well as studies of genetic variation and phenotypic consequences. Supported by ORIP (P51OD011106, P51OD011107, P51OD011132, P51OD011104, U42OD024282, U42OD010568, R24OD011173, R24OD021324, R24OD010962), NHGRI, NIMH, NHLBI, and NIGMS.
Lipocalin-2 Is an Anorexigenic Signal in Primates
Petropoulou et al., eLife. 2020.
https://doi.org/10.7554/eLife.58949
The hormone lipocalin-2 (LCN2) suppresses food intake in mice. Researchers demonstrated that LCN2 increases after a meal and reduces hunger in people with normal weight or overweight, but not in obese individuals. The researchers also showed that LCN2 crosses the blood-brain barrier and binds to the hypothalamus in vervet monkeys. LCN2 was found to bind to the hypothalamus in human, baboon, and rhesus macaque brain sections. When injected into vervets, LCN2 suppressed food intake and lowered body weight without toxic effects in short-term experiments. These findings lay the groundwork to investigate whether LCN2 might be a useful treatment for obesity. Supported by ORIP (P40OD010965), NCATS, NIDDK, NIA, and NHLBI.