Selected Grantee Publications
A Murine Model of Trypanosoma brucei-Induced Myocarditis and Cardiac Dysfunction
Crilly et al., Microbiology Spectrum. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11792545
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases, HAT and AAT, respectively. Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models for T. brucei infection. A clinically relevant, reproducible murine model for T. brucei–associated cardiomyopathy is currently unavailable. The researchers developed a 7- to 10-week-old C57Bl/6J male and female mouse model for T. brucei infection that demonstrates myocarditis, elevated serum levels of NT-proBNP, and electrocardiographic abnormalities, recapitulating the clinical features of infection. The results demonstrate the importance of interstitial space in T. brucei colonization and provide a relevant, reproducible murine model to investigate the pathogenesis and potential therapeutics of T. brucei-mediated heart damage. Supported by ORIP (T32OD011089, S10OD026859), NCI, and NIA.
Functional Differences Between Rodent and Human PD-1 Linked to Evolutionary Divergence
Masubuchi et al., Science Immunology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39752535/
Programmed cell death protein 1 (PD-1), an immune checkpoint receptor, regulates immunity against cancer. Rodent models (e.g., mice) do not exhibit the same response rates and immune-related adverse effects to PD-1 blocking drugs as patients with cancer. Only 59.6% amino acid sequence identity is conserved in human PD-1 (hu PD-1) and mouse PD-1 (mo PD-1). Researchers used mouse tumor models, coculture assays, and biophysical assays to determine key functional and biochemical differences between hu PD-1 and mo PD-1. HuPD-1 demonstrates stronger suppressive activity of interleukin-2 secretion and CD69 expression than mo PD-1 because of the ectodomain and intracellular domain, but not the transmembrane domain. Analysis of rodent evolution demonstrated that other inhibitory immunoreceptors were positively selected or had selection intensification over PD-1. Understanding the conservation and divergence of PD-1 signaling at the molecular level in humans compared with mice is needed to properly translate preclinical data to clinical therapeutics. Supported by ORIP (S10OD026929), NCI, and NIA.
Matrikine Stimulation of Equine Synovial Fibroblasts and Chondrocytes Results in an In Vitro Osteoarthritis Phenotype
Gagliardi et al., Journal of Orthopaedic Research. 2025.
https://pubmed.ncbi.nlm.nih.gov/39486895
Advancements in therapy development for osteoarthritis (OA) currently are limited due to a lack of physiologically relevant in vitro models. This study aimed to understand the effect of matrikine stimulation, using human recombinant fibronectin fragment containing domains 7–10 (FN7–10), on equine synovial fibroblasts and chondrocytes. Inflammatory cytokines, chemokines, and matrix degradation genes in equine synovial fibroblasts and chondrocytes were significantly altered in response to FN7–10 stimulation; marked upregulation was observed in interleukin-6 (IL-6), IL-4, IL-10, matrix metalloproteinase 1 (MMP1), MMP3, MMP13, CCL2/MCP1, and CXCL6/GCP-2 gene expression. Only IL-6 protein production was significantly increased in media isolated from cells stimulated with FN7–10. These results support the potential use of equine synovial fibroblasts and chondrocytes—employing FN7–10—as representative in vitro models to study OA. Supported by ORIP (T32OD011130) and NIAMS.