Selected Grantee Publications
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Persistence of a Skewed Repertoire of NK Cells in People With HIV-1 on Long-Term Antiretroviral Therapy
Anderko et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38551350
HIV-1 infection alters the natural killer (NK) cell phenotypic and functional repertoire. A rare population of FcRγ−NK cells exhibiting characteristics of traditional immunologic memory expands in people with HIV. In a longitudinal analysis during the first 4 years of antiretroviral therapy (ART), a skewed repertoire of cytokine unresponsive FcRγ−memory-like NK cells persisted in people with HIV, and surface expression of CD57 and KLRG1 increased, suggesting progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing antibody titers to human cytomegalovirus (CMV), with human CMV viremia detected in approximately one-third of people studied during the first 4 years of ART. About 40% of people studied displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis. These findings indicate that NK cell irregularities persist in people with HIV despite long-term ART. Supported by ORIP (P51OD011132, S10OD026799), NIAID, and NHLBI.
Macrophages Derived From Human Induced Pluripotent Stem Cells (iPSCs) Serve As a High-Fidelity Cellular Model for Investigating HIV-1, Dengue, and Influenza viruses
Yang et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38323811/
Macrophages can be weaponized by viruses to host viral reproduction and support long-term persistence. The most common way of studying these cells is by isolating their precursors from donor blood and differentiating the isolated cells into macrophages. This method is costly and technically challenging, and it produces varying results. In this study, researchers confirmed that macrophages derived from iPSC cell lines—a model that is inexpensive, consistent, and modifiable by genome editing—are a suitable model for experiments involving HIV and other viruses. Macrophages derived from iPSCs are as susceptible to infection as macrophages derived from blood, with similar infection kinetics and phenotypes. This new model offers researchers an unlimited source of cells for studying viral biology. Supported by ORIP (R01OD034046, S10OD021601), NIAID, NIDA, NIGMS, and NHLBI.