Selected Grantee Publications
- Clear All
- 5 results found
- nhlbi
- ninds
- Stem Cells/Regenerative Medicine
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
A Deep Learning Platform to Assess Drug Proarrhythmia Risk
Serrano et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/pii/S1934590922004866?via%3Dihub=
Investigators trained a convolutional neural network (CNN) classifier to learn and ultimately identify features of in vitro action potential recordings of human induced pluripotent stem cell (iPSC)–derived cardiomyocytes (hiPSC-CMs) that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia. The risk profiles of the test drugs were similar across hiPSC-CMs derived from different healthy donors. In addition, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high‑risk drugs in the hiPSC-CMs. These data indicate that deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia. Supported by ORIP (S10OD030264) and NHLBI.
Generation of SIV-Resistant T Cells and Macrophages from Nonhuman Primate Induced Pluripotent Stem Cells with Edited CCR5 Locus
D’Souza et al., Stem Cell Reports. 2022.
https://www.doi.org/10.1016/j.stemcr.2022.03.003
Genetically modified T cells have shown promise as a potential therapy for HIV. A renewable source of T cells from induced pluripotent stem cells (iPSCs) could help to further research progress in this area. The researchers used Mauritian cynomolgus macaques to generate simian immunodeficiency virus (SIV)–resistant T cells and macrophages from iPSCs. These engineered cells demonstrated impaired capacity for differentiation into CD4+CD8+ T cells. T cells and macrophages from the edited iPSCs did not support SIV replication. These findings could be applied to the development of new HIV therapies. Supported by ORIP (R24OD021322, P51OD011106) and NHLBI.