Selected Grantee Publications
- Clear All
- 11 results found
- nhlbi
- ninds
- Pediatrics
Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation
Mitchell et al., Journal of Heart and Lung Transplantation. 2025.
https://pubmed.ncbi.nlm.nih.gov/39778609
This study evaluated the potential of genetically engineered pig hearts for human pediatric heart failure patients, with 11 infantile pig heart transplants performed in size-matched infant baboons (Papio anubis) (sex not specified). All grafts supported normal cardiac functions post-operatively, and six animals survived beyond 3 months. While early cardiac function was not a limiting factor for survival, systemic inflammation led to pulmonary edema and pleural effusions, which impeded long-term outcomes. These findings highlight the feasibility of cardiac xenotransplantation in infants and underscore the need for targeted therapies to manage inflammation and improve survival. Supported by ORIP (P40OD024628) and NHLBI.
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Surgical Protocol for Partial Heart Transplantation in Growing Piglets
Medina, World Journal for Pediatric and Congenital Heart Surgery. 2024.
https://pubmed.ncbi.nlm.nih.gov/38780414/
Researchers are interested in using partial heart transplantation (i.e., only the part of the heart containing the necessary heart valve is transplanted) to deliver growing heart valve implants. This novel technique allows partial heart transplants to grow, similar to the valves in heart transplants. More work is needed, however, to understand the underlying biological mechanisms of this approach and achieve progress in clinical care. In the present study, the authors present a surgical protocol for partial heart transplantation in growing piglets. This model will enable other researchers to seek fundamental knowledge about the nature of partial heart transplants. Supported by ORIP (U42OD011140) and NHLBI.
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Inflammatory Blockade Prevents Injury to the Developing Pulmonary Gas Exchange Surface in Preterm Primates
Toth et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abl8574
Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25% to 40% of preterm births. Investigators used a prenatal rhesus macaque model to assess how fetal inflammation could affect lung development. They found that inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure. Blockade of the inflammatory cytokines IL-1β and TNFα ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells. These data provide new insight into key mechanisms of developmental lung injury and highlight targeted inflammatory blockade as a potential therapeutic approach to ameliorate lung injury in the neonatal population. Supported by ORIP (P51OD011107), NIAID, NHLBI, NICHD, and NIEHS.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.