Selected Grantee Publications
Antiretroviral Therapy Ameliorates Simian Immunodeficiency Virus–Associated Myocardial Inflammation by Dampening Interferon Signaling and Pathogen Response in the Heart
Robinson et al., The Journal of Infectious Diseases. 2023.
https://doi.org/10.1093/infdis/jiad105
HIV is associated with increased risk of cardiovascular disease, but the underlying mechanisms are not fully understood. Using RNA sequencing, investigators characterized the effects of simian immunodeficiency virus (SIV) infection on the hearts of male rhesus macaques. They demonstrated that SIV infection drives a canonical antiviral response in the heart, as well as dysregulation of genes involved in fatty acid shuttling and metabolism. Their findings suggest that antiretroviral therapy helps mitigate immune activation during viremic conditions and plays a cardioprotective role. Future studies are needed to assess the long-term effects of these dynamics. Supported by ORIP (P51OD011104), NIAID, NIMH, and NINDS.
SALL1 Enforces Microglia-Specific DNA Binding and Function of SMADs to Establish Microglia Identity
Fixsen et al., Nature Immunology. 2023.
https://doi.org/10.1038/s41590-023-01528-8
Microglia function is thought to play a role in neurodevelopmental, psychiatric, and neurodegenerative diseases. Using knockout mice, investigators explored functional interactions between spalt-like transcription factor 1 (SALL1) and SMAD4, which demonstrated that interactions are mediated by a conserved microglia-specific SALL1 super-enhancer and result in direct activation of regulatory elements. The concerted interactions induce a microglia lineage determining program of gene expression. These findings indicate that expression of SALL1 and associated genes could contribute to phenotypes of aging and neurodegenerative diseases. Supported by ORIP (S10OD026929), NIA, NIMH, and NINDS.
Proteomic Profiling of Extracellular Vesicles Isolated From Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)
Reyes et al., Toxins (Basel). 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467150/
Toxins in viperid snakes can induce clinically heterogeneous effects, but most viper venoms are composed of only 10 main protein families. Researchers investigated the proteome expression profile of extracellular vesicles isolated from biofluid samples from male and female mice after injection with crude venom and cysteine-rich secretory proteins. They reported changes in the expression of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. This work could be applied in future efforts for early detection and assessment of local effects. Supported by ORIP (P40OD010960), NIGMS, and NHLBI.
Osteopontin Is an Integral Mediator of Cardiac Interstitial Fibrosis in Models of Human Immunodeficiency Virus Infection
Robinson et al., The Journal of Infectious Diseases. 2023.
https://www.doi.org/10.1093/infdis/jiad149
HIV infection is associated with increased risk of cardiovascular disease. Plasma osteopontin (Opn) is correlated with cardiac pathology, but more work is needed to understand the underlying mechanisms driving cardiac fibrosis. Researchers explored this topic using mouse embryonic fibroblasts, male macaques, and humanized mice of both sexes. They reported the accumulation of Opn in the heart with simian immunodeficiency virus infection. Systemic inhibition of Opn can prevent HIV-associated interstitial fibrosis in the left ventricle. These findings suggest that Opn could be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV. Supported by ORIP (P51OD011104), NIAID, NHLBI, NIMH, and NINDS.
Brain Microglia Serve as a Persistent HIV Reservoir Despite Durable Antiretroviral Therapy
Tang et al., The Journal of Clinical Investigation. 2023.
https://www.doi.org/10.1172/JCI167417
Brain microglia are likely to play a role in rebound viremia following the cessation of antiretroviral therapy, but more work is needed to fully understand HIV persistence in the central nervous system (CNS). The investigators developed a protocol to isolate highly pure populations of brain myeloid cells and microglia from the tissues of male rhesus macaques, as well as from rapid autopsies of men and women with HIV. Their observations support the concept that brain microglia are a stable reservoir of quiescent infection. Thus, this work provides a physiologically relevant platform for studies of the biology of CNS reservoirs. Supported by ORIP (P51OD011132), NIAID, and NIMH.
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Chronic Immune Activation and Gut Barrier Dysfunction Is Associated with Neuroinflammation in ART-Suppressed SIV+ Rhesus Macaques
Byrnes et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085024/
About 40% of people with HIV develop neurocognitive disorders, potentially resulting from persistent infection in the brain and neuroinflammation. Investigators characterized the central nervous system reservoir and immune environment of simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes during acute, chronic, or antiretroviral therapy (ART)–suppressed infection. They reported that neuroinflammation and blood–brain barrier dysfunction correlated with viremia and immune activation in the gut. Their findings suggest that gastrointestinal tract damage can contribute to neuroimmune activation and inflammation, even in the absence of SIV or HIV infection. This work also has implications for other neurological disorders where chronic inflammation is associated with pathogenesis. Supported by ORIP (P51OD011132, P51OD011092, U42OD011023, R24OD010445), NIAID, NCI, and NIMH.
Pancreatic Cancer Cells Upregulate LPAR4 in Response to Isolation Stress to Promote an ECM-Enriched Niche and Support Tumour Initiation
Wu et al., Nature Cell Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/36646789/
Understanding drivers of tumor initiation is critical for cancer therapy. Investigators found transient increase of lysophosphatidic acid receptor 4 (LPAR4) in pancreatic cancer cells exposed to environmental stress or chemotherapy. LPAR4 induced tumor initiation, stress tolerance, and drug resistance by downregulating miR-139-5p, a tumor suppressor, and upregulating fibronectin. These results indicate that LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix (ECM), allowing cells to survive isolation stress and compensate for the absence of stromal-derived factors by creating their own tumor-initiating niche. Supported by ORIP (K01OD030513, T32OD017863), NCI, and NHLBI.