Selected Grantee Publications
- Clear All
- 6 results found
- nhlbi
- nimh
- Microbiome
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
Gut Microbiome Dysbiosis in Antibiotic-Treated COVID-19 Patients Is Associated with Microbial Translocation and Bacteremia
Bernard-Raichon et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33395-6
The investigators demonstrated that SARS-CoV-2 infection induced gut microbiome dysbiosis in male mice. Samples collected from human COVID-19 patients of both sexes also revealed substantial gut microbiome dysbiosis. Analysis of blood culture results testing for secondary microbial bloodstream infections with paired microbiome data indicated that bacteria might translocate from the gut into the systemic circulation of COVID-19 patients. These results were consistent with a direct role for gut microbiome dysbiosis in enabling dangerous secondary infections during COVID-19. Supported by ORIP (S10OD021747), NCI, NHLBI, NIAID, and NIDDK.
Sociability in a Non-Captive Macaque Population Is Associated with Beneficial Gut Bacteria
Johnson et al., Frontiers in Microbiology. 2022.
https://www.doi.org/10.3389/fmicb.2022.1032495
Social connections are essential for good health and well-being in social animals, such as humans and other primates. Increasingly, evidence suggests that the gut microbiome—through the so-called “gut–brain axis”—plays a key role in physical and mental health and that bacteria can be transmitted socially (e.g., through touch). Here, the authors explore behavioral variation in non‑captive rhesus macaques of both sexes with respect to the abundance of specific bacterial genera. Their results indicate that microorganisms whose abundance varies with individual social behavior also have functional links to host immune status. Overall, these findings highlight the connections between social behavior, microbiome composition, and health in an animal population. Supported by ORIP (P40OD012217) and NIMH.
Reduced Alcohol Preference and Intake after Fecal Transplant in Patients with Alcohol Use Disorder Is Transmissible to Germ-Free Mice
Wolstenholme et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-34054-6
Alcohol use disorder is a major cause of reduced life expectancy worldwide, and this misuse has increased exponentially during the COVID-19 pandemic. Fecal microbiota transplant has been shown previously to reduce alcohol craving in humans with cirrhosis. Here, the investigators report that the reduction in craving and alcohol preference is transmissible to male germ-free mice only when live bacteria—and not germ-free supernatants—are used for colonization. This differential colonization was associated with alterations in the gut immune–inflammatory response through short-chain fatty acids. Supported by ORIP (P40OD010995), NIAAA, NIDDK, and NIMH.
Cannabinoid Control of Gingival Immune Activation in Chronically SIV-Infected Rhesus Macaques Involves Modulation of the Indoleamine-2,3-Dioxygenase-1 Pathway and Salivary Microbiome
McDew-White et al., EBioMedicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34954656/
HIV-associated periodontal disease (PD) affects people living with HIV (PLWH) on combination anti-retroviral therapy (cART). Researchers used a systems biology approach to investigate the molecular, metabolome, and microbiome changes underlying PD and its modulation by phytocannabinoids (Δ9-THC) in rhesus macaques. Δ9-THC reduced IDO1 protein expression. The findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis, and potentially metabolic disease in PLWH on cART. Supported by ORIP (P51OD011104, P51OD011133, U42OD010442), NIAID, NIDA, NIDDK, NIDCR, and NIMH.