Selected Grantee Publications
- Clear All
- 49 results found
- nhlbi
- nigms
- Vaccines/Therapeutics
Structures of Respiratory Syncytial Virus G Bound to Broadly Reactive Antibodies Provide Insights into Vaccine Design
Juarez et al., Scientific Reports. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11906780
Respiratory syncytial virus (RSV) is one of the leading causes of severe lower respiratory infection in both infants and older adults. RSV viral entry and modulation of the host immunity is mediated by attachment glycoprotein RSV G binding to the chemokine receptor CX3CR1. Antibodies isolated from RSV-exposed individuals have shown great promise in host protection. Researchers using an ORIP-funded electron microscope, in conjunction with X-ray crystallography, have solved the structure of these antibodies bound to the RSV G protein and identified a novel dual antibody binding region. The presence of dual antibody binding sites indicates the potential to elicit antibody responses that resist virus escape. These findings will help develop next-generation RSV prophylactics and provide insight for new concepts in vaccine design. Supported by ORIP (S10OD027012, S10OD025097), NIAID, NHGRI, and NIGMS.
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
A Comprehensive Atlas of AAV Tropism in the Mouse
Walkey et al., Molecular Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39863928
Over the past three decades, adeno-associated viruses (AAVs) have emerged as the leading viral vector for in vivo gene therapy. This study presents a comprehensive atlas of AAV tropism in male and female mice, evaluating 10 naturally occurring AAV serotypes across 22 tissues using systemic delivery. Researchers employed a fluorescent protein activation approach to visualize AAV transduction patterns and detected transduction of unexpected tissues, including in adrenal glands, testes, and ovaries. Biodistribution closely matched the fluorescent signal intensity. This publicly available data set provides valuable insights into AAV vector targeting and supports optimal serotype selection for basic research and preclinical gene therapy applications in murine models. Supported by ORIP (U42OD026645, U42OD035581, U42OD026635), NCI, NHLBI, NICHD, and NIDDK.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Functional and Structural Basis of Human Parainfluenza Virus Type 3 Neutralization With Human Monoclonal Antibodies
Suryadevara et al., Nature Microbiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38858594
Human parainfluenza virus type 3 (hPIV3) can cause severe disease in older people and infants, and the haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Researchers isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. They also delineated the structural basis of neutralization for HN and F monoclonal antibodies (mAbs). Rats were protected against infection and disease in vivo by mAbs that neutralized hPIV3 in vitro. This work establishes correlates of protection for hPIV3 and highlights the potential clinical utility of mAbs. Supported by ORIP (K01OD036063), NIAID, and NIGMS.
Isolation of Human Antibodies Against Influenza B Neuraminidase and Mechanisms of Protection at the Airway Interface
Wolters et al., Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/38823390
In this report, researchers describe the isolation of human monoclonal antibodies (mAbs) that recognized the influenza B virus (IBV) neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Their work suggests that the antibodies recognized two major antigenic sites. The first group included mAb FluB-393, and the second group contained an active site mAb, FluB-400. Their findings can help inform the mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates. Supported by ORIP (K01OD036063) and NIGMS.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.