Selected Grantee Publications
Evolution of the Clinical-Stage Hyperactive TcBuster Transposase as a Platform for Robust Non-Viral Production of Adoptive Cellular Therapies
Skeate et al., Molecular Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38627969/
In this study, the authors report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieve high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. This proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improved survival in a Burkitt lymphoma xenograft model in vivo. Their work suggests that TcB-M is a versatile, safe, efficient, and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition. Supported by ORIP (F30OD030021), NCI, NHLBI, and NIAID.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Hasselluhn et al., Cancer Discovery. 2024.
https://pubmed.ncbi.nlm.nih.gov/37966260/
This study presents a key mechanism that prevents pancreatic ductal adenocarcinoma (PDAC) from undergoing neoangiogenesis, which affects its development, pathophysiology, metabolism, and treatment response. Using human and murine PDAC explants, which effectively retain the complex cellular interactions of native tumor tissues, and single-cell regulatory network analysis, the study identified a cascade of three paracrine pathways bridging between multiple cell types and acting sequentially, Hedgehog to WNT to VEGF, as a key suppressor of angiogenesis in KRAS-mutant PDAC cells. This study provides an experimental paradigm for dissecting higher-order cellular interactions in tissues and has implications for PDAC treatment strategies. Supported by ORIP (S10OD012351, S10OD021764), NCI, and NIDDK.
Simultaneous Evaluation of Treatment Efficacy and Toxicity for Bispecific T-Cell Engager Therapeutics in a Humanized Mouse Model
Yang et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300040R
Immuno-oncology–based therapies are an evolving powerful treatment strategy that targets the immune system and harnesses it to kill tumor cells directly. Investigators describe the novel application of a humanized mouse model that can simultaneously evaluate the efficacy of bispecific T cell engagers to control tumor burden and the development of cytokine release syndrome. The model also captures variability in responses for individual patients. Supported by ORIP (R24OD026440), NIAID, NCI, and NIDDK.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Pancreatic Cancer Cells Upregulate LPAR4 in Response to Isolation Stress to Promote an ECM-Enriched Niche and Support Tumour Initiation
Wu et al., Nature Cell Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/36646789/
Understanding drivers of tumor initiation is critical for cancer therapy. Investigators found transient increase of lysophosphatidic acid receptor 4 (LPAR4) in pancreatic cancer cells exposed to environmental stress or chemotherapy. LPAR4 induced tumor initiation, stress tolerance, and drug resistance by downregulating miR-139-5p, a tumor suppressor, and upregulating fibronectin. These results indicate that LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix (ECM), allowing cells to survive isolation stress and compensate for the absence of stromal-derived factors by creating their own tumor-initiating niche. Supported by ORIP (K01OD030513, T32OD017863), NCI, and NHLBI.