Selected Grantee Publications
Cannabinoid Enhancement of lncRNA MMP25-AS1/MMP25 Interaction Reduces Neutrophil Infiltration and Intestinal Epithelial Injury in HIV/SIV Infection
Premadasa et al., Journal of Clinical Investigation Insight. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10132162/
Gastrointestinal CD4+ T cell depletion during acute simian immunodeficiency virus (SIV) and HIV infection causes significant structural and functional damage, disrupting intestinal immune homeostasis and leading to intestinal epithelial barrier dysfunction. Oral phytocannabinoids are safe and well tolerated in people with HIV, but more information is needed regarding the effects of long-term tetrahydrocannabinol (THC) use on the intestinal epithelial compartment. Investigators profiled gene expression in the colonic epithelium of SIV-infected rhesus macaques of both sexes that were administered THC. They reported that low-dose THC can reduce neutrophil infiltration and intestinal epithelial injury, potentially by downregulating MMP25 expression through modulation of a long noncoding RNA, MMP25-AS1. Supported by ORIP (P51OD011104, P51OD011103), NIAID, and NIDA.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Cannabinoids Modulate the Microbiota–Gut–Brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis while Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels
McDew-White et al., Journal of Neuroinflammation. 2023.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02729-6
Chronic neuroinflammation is thought to be a significant contributor to HIV-associated neurocognitive disorders. Using rhesus macaques of both sexes, researchers investigated the effects of simian immunodeficiency virus (SIV) infection on the microbiota–gut–brain axis (MGBA), as well as the use of low-dose cannabinoids to reverse MGBA dysregulation. They reported that tetrahydrocannabinol reduced neuroinflammation and dysbiosis and increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid, and indole-3-propionate levels. This study offers a potential strategy to promote brain health in people with HIV. Supported by ORIP (P51OD011104, P51OD011103), NIAID, and NIDA.
Pancreatic Cancer Cells Upregulate LPAR4 in Response to Isolation Stress to Promote an ECM-Enriched Niche and Support Tumour Initiation
Wu et al., Nature Cell Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/36646789/
Understanding drivers of tumor initiation is critical for cancer therapy. Investigators found transient increase of lysophosphatidic acid receptor 4 (LPAR4) in pancreatic cancer cells exposed to environmental stress or chemotherapy. LPAR4 induced tumor initiation, stress tolerance, and drug resistance by downregulating miR-139-5p, a tumor suppressor, and upregulating fibronectin. These results indicate that LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix (ECM), allowing cells to survive isolation stress and compensate for the absence of stromal-derived factors by creating their own tumor-initiating niche. Supported by ORIP (K01OD030513, T32OD017863), NCI, and NHLBI.
Assessment of Anti-CD20 Antibody Pre-Treatment for Augmentation of CAR-T Cell Therapy in SIV-Infected Rhesus Macaques
Pampusch et al., Frontiers in Immunology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941136/
Chronic HIV replication occurs primarily within lymphoid follicles, and investigators hypothesized that temporary disruption of these follicles would create space for chimeric antigen receptor (CAR) T cell engraftment and lead to increased abundance and persistence of CAR T cells. They evaluated CAR T cell abundance and persistence in rhesus macaques of both sexes following simian immunodeficiency virus (SIV) infection and antiretroviral therapy suppression. Their results suggest that CAR T cells expanded to a greater extent in the depleted and CAR T cell–treated animals. Further studies are needed to evaluate strategies for engraftment and the persistence of HIV-specific CAR T cells. Supported by ORIP (P51OD011106, P51RR000167), NIAID, and NIDA.
SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128
Kopcho et al., Viruses. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059597/
MicroRNAs (miRNAs) are thought to be involved in HIV pathogenesis, but the effect of HIV on the compartmentalization of miRNAs within extracellular particles is unclear. Researchers sequenced the small RNA population of paired EVs and ECs from male rhesus macaques. They showed that extracellular miRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid‑based carriers, with a significant proportion associated with ECs. Further, simian immunodeficiency virus (SIV) infection altered the miRNAome profile of EVs and revealed miR‑128‑3p as a potential target of infection. This work suggests that EV‑ and EC‑associated miRNAs potentially could serve as biomarkers for various diseases. Supported by ORIP (P51OD011104, P51OD011133), NIAID, and NIDA.
Prolonged Experimental CD4+ T-Cell Depletion Does Not Cause Disease Progression In SIV-Infected African Green Monkeys
Le Hingrat et al., Nature Communications. 2023.
https://www.nature.com/articles/s41467-023-36379-2
Chronically simian immunodeficiency virus (SIV)–infected African green monkeys (AGMs) partially recover mucosal CD4+ T cells, maintain gut integrity, and do not progress to AIDS. Investigators assessed the impact of prolonged, antibody-mediated CD4+ T cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T cells and more than 90% of mucosal CD4+ T cells were depleted. Plasma viral loads and cell-associated viral RNA in tissues were lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintained gut integrity, controlled immune activation, and did not progress to AIDS. Therefore, CD4+ T cell depletion is not a determinant of SIV-related gut dysfunction when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T cell restoration in SIV-infected AGMs. Supported by ORIP (P40OD028116), NIAID, NIDDK, and NHLBI.
Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ9-THC)
Kopcho et al., Viruses. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053514/
MicroRNAs (miRNAs) have been shown to regulate host response to HIV infection. Previously, investigators proposed that the assortment of extracellular miRNAs into distinct carriers could provide a new dimension to miRNA-based biomarkers. In this follow-up study, the investigators used particle purification liquid chromatography to determine the abundance and compartmentalization of blood plasma extracellular miRNAs into extracellular vesicles and extracellular condensates during simian immunodeficiency virus (SIV) infection in male rhesus macaques. They reported that different treatments—combination ART and Δ9‑THC—impart distinct effects on the enrichment and compartmentalization of extracellular miRNAs. These data suggest that the extracellular miRNA profile in blood plasma is altered following SIV infection. Supported by ORIP (P51OD011104, P51OD011133), NIAID, and NIDA.
CD8+ Lymphocytes Do Not Impact SIV Reservoir Establishment under ART
Statzu et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894752/
The HIV-1 latent reservoir has been shown to persist following antiretroviral therapy (ART), but the mechanisms underlying the establishment and maintenance of the reservoir are not fully understood. Using rhesus macaques of both sexes, investigators examined the effects of CD8+ T cells on formation of the latent reservoir with simian immunodeficiency virus (SIV) infection. They found that CD8+ T cell depletion resulted in slower decline of viremia but did not change the frequency of infected CD4+ T cells in the blood or lymph nodes. Additionally, the size of the persistent reservoir was unchanged. These findings suggest that the viral reservoir is established largely independent of SIV-specific cytotoxic T lymphocyte control. Supported by ORIP (P51OD011132), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
A Deep Learning Platform to Assess Drug Proarrhythmia Risk
Serrano et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/pii/S1934590922004866?via%3Dihub=
Investigators trained a convolutional neural network (CNN) classifier to learn and ultimately identify features of in vitro action potential recordings of human induced pluripotent stem cell (iPSC)–derived cardiomyocytes (hiPSC-CMs) that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia. The risk profiles of the test drugs were similar across hiPSC-CMs derived from different healthy donors. In addition, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high‑risk drugs in the hiPSC-CMs. These data indicate that deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia. Supported by ORIP (S10OD030264) and NHLBI.