Selected Grantee Publications
- Clear All
- 20 results found
- nhlbi
- nichd
- Microscopy
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
Enhanced RNA-Targeting CRISPR-Cas Technology in Zebrafish
Moreno-Sánchez et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/40091120
CRISPR-Cas13 RNA-targeting systems, widely used in basic and applied sciences, have generated controversy because of collateral activity in mammalian cells and mouse models. In this study, researchers optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. Researchers used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, improve nuclear RNA targeting, and compare different computational models to determine the most accurate prediction of gRNA activity in vivo. Results demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Their findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and advance in vivo applications. Supported by ORIP (R21OD034161), NICHD, and NIGMS.
Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation
Mitchell et al., Journal of Heart and Lung Transplantation. 2025.
https://pubmed.ncbi.nlm.nih.gov/39778609
This study evaluated the potential of genetically engineered pig hearts for human pediatric heart failure patients, with 11 infantile pig heart transplants performed in size-matched infant baboons (Papio anubis) (sex not specified). All grafts supported normal cardiac functions post-operatively, and six animals survived beyond 3 months. While early cardiac function was not a limiting factor for survival, systemic inflammation led to pulmonary edema and pleural effusions, which impeded long-term outcomes. These findings highlight the feasibility of cardiac xenotransplantation in infants and underscore the need for targeted therapies to manage inflammation and improve survival. Supported by ORIP (P40OD024628) and NHLBI.
Dysregulation of mTOR Signalling Is a Converging Mechanism in Lissencephaly
Zhang et al., Nature. 2025.
https://pubmed.ncbi.nlm.nih.gov/39743596
Lissencephaly (smooth brain) is a rare genetic condition, with such symptoms as epilepsy and intellectual disability and a median life expectancy of 10 years. This study reveals that reduced activity of the mTOR pathway may be a common cause of lissencephaly. Researchers used laboratory-grown brain models (organoids) and sequencing and spectrometry techniques to identify decreased mTOR activation in two types of lissencephaly disorders: p53-induced death domain protein 1 and Miller–Dieker lissencephaly syndrome. Pharmacological activation of mTOR signaling with a brain-selective mTORC1 activator molecule, NV-5138, prevented and reversed the morphological and functional defects in organoids. These findings suggest that mTOR dysregulation contributes to the development of lissencephaly spectrum disorders and highlight a potential druggable pathway for therapy. Supported by ORIP (S10OD018034, S10OD019967, S10OD030363), NCATS, NHGRI, NICHD, NIDA, NIGMS, NIMH, and NINDS.
A Comprehensive Atlas of AAV Tropism in the Mouse
Walkey et al., Molecular Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39863928
Over the past three decades, adeno-associated viruses (AAVs) have emerged as the leading viral vector for in vivo gene therapy. This study presents a comprehensive atlas of AAV tropism in male and female mice, evaluating 10 naturally occurring AAV serotypes across 22 tissues using systemic delivery. Researchers employed a fluorescent protein activation approach to visualize AAV transduction patterns and detected transduction of unexpected tissues, including in adrenal glands, testes, and ovaries. Biodistribution closely matched the fluorescent signal intensity. This publicly available data set provides valuable insights into AAV vector targeting and supports optimal serotype selection for basic research and preclinical gene therapy applications in murine models. Supported by ORIP (U42OD026645, U42OD035581, U42OD026635), NCI, NHLBI, NICHD, and NIDDK.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
The Buoyancy of Cryptococcal Cells and Its Implications for Transport and Persistence of Cryptococcus in Aqueous Environments
Jimenez et al., mSphere. 2024.
https://pubmed.ncbi.nlm.nih.gov/39601568/
Cryptococcosis is a major fungal pathogen that causes life-threatening infections. Researchers discovered that Cryptococcus has unique buoyancy properties that help with its survival and spread through water transport. This study explores how these fungal cells remain suspended in liquid, potentially enhancing their ability to survive in their surroundings and infect new hosts. Understanding the role of cellular buoyancy in Cryptococcus transport could improve strategies to prevent spread in aqueous settings, offering new insights into fungal infection risks. Supported by ORIP (T32OD011089), NIAID, and NHLBI.
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.