Selected Grantee Publications
A Novel Wireless ECG System for Prolonged Monitoring of Multiple Zebrafish for Heart Disease and Drug Screening Studies
Le et al., Biosensors and Bioelectronics. 2022.
https://pubmed.ncbi.nlm.nih.gov/34801796/
Zebrafish and their mutant lines have been extensively used in cardiovascular studies. In the current study, the novel system Zebra II is presented for prolonged electrocardiogram (ECG) acquisition and analysis for multiple zebrafish within controllable working environments. The Zebra II is composed of a perfusion system, apparatuses, sensors, and an in-house electronic system. First, the Zebra II is validated in comparison with a benchmark system, namely iWORX, through various experiments. The validation displayed comparable results in terms of data quality and ECG changes in response to drug treatment. The effects of anesthetic drugs and temperature variation on zebrafish ECG were subsequently investigated in experiments that need real-time data assessment. The Zebra II's capability of continuous anesthetic administration enabled prolonged ECG acquisition up to 1 h compared to that of 5 min in existing systems. The novel cloud-based automated analysis with data obtained from four fish further provided a useful solution for combinatorial experiments and helped save significant time and effort. The system showed robust ECG acquisition and analytics for various applications, including arrhythmia in sodium-induced sinus arrest, temperature-induced heart rate variation, and drug-induced arrhythmia in Tg(SCN5A-D1275N) mutant and wildtype fish. The multiple channel acquisition also enabled the implementation of randomized controlled trials on zebrafish models. The developed ECG system holds promise and solves current drawbacks in order to greatly accelerate drug screening applications and other cardiovascular studies using zebrafish. Supported by ORIP (R44OD024874) and NHLBI.
CAR/CXCR5–T Cell Immunotherapy Is Safe and Potentially Efficacious in Promoting Sustained Remission of SIV Infection
Pampusch et al., PLOS Pathogens. 2022.
https://www.doi.org/10.1371/journal.ppat.1009831
HIV and simian immunodeficiency virus (SIV) replication are concentrated within the B cell follicles of secondary lymphoid tissues. In this study, the researchers developed immunotherapeutic chimeric antigen receptor (CAR) T cells that home to follicles and clear SIV-infected cells in a rhesus macaque model. The CAR T cells localized to the follicle, replicated, and interacted directly with infected cells. Most of the treated animals maintained lower viral loads in the blood and follicles, compared to control animals. These findings demonstrate the safety and potential efficacy of this immunotherapy approach for long-term remission of HIV without requiring the lifelong use of antiretroviral therapy. Supported by ORIP (P51OD011106), NIAID, and NHLBI.
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.
Factor XII Plays a Pathogenic Role in Organ Failure and Death in Baboons Challenged with Staphylococcus aureus
Silasi et al., Blood. 2021.
https://pubmed.ncbi.nlm.nih.gov/33598692/
Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model for lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. The authors used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII. Inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms; untreated control animals suffered irreversible multiorgan failure. This study confirms their previous finding that at least two enzymes of FXIa and FXIIa play critical roles in the development of an acute and terminal inflammatory response. Supported by ORIP (P40OD024628), NIAID, NHLBI, and NIGMS.
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
Cell-Specific Transcriptional Control of Mitochondrial Metabolism by TIF1γ Drives Erythropoiesis
Rossmann et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/33986176/
Transcription and metabolism both influence cell function but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. The authors discovered that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage. Supported by ORIP (R24OD017870), NIGMS, NHLBI, and NCI.
'Enhancing' Red Cell Fate Through Epigenetic Mechanisms
Rossmann and Zon et al., Current Opinion in Hematology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33741760/
Transcription of erythroid-specific genes is regulated by the three-dimensional (3D) structure and composition of chromatin, which changes during erythroid differentiation. These authors address recent developments delineating the interface of chromatin regulation and erythroid-specific lineage transcription. They survey the erythroid chromatin landscape, erythroid enhancer-promotor interactions, super-enhancer functionality, the role of chromatin modifiers and epigenetic crosstalk, as well as the progress in mapping red blood cell (RBC) trait-associated genetic variants within cis-regulatory elements (CREs) identified in genome-wide association study (GWAS) efforts. New emerging technologies allow investigation of small cell numbers have advanced our understanding of chromatin dynamics during erythroid differentiation in vivo. Supported by ORIP (R24OD017870) and NHLBI.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.

