Selected Grantee Publications
- Clear All
- 35 results found
- nhlbi
- nia
- Vaccines/Therapeutics
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
Senescent-like Microglia Limit Remyelination Through the Senescence Associated Secretory Phenotype
Gross et al., Nature Communications. 2025.
https://www.nature.com/articles/s41467-025-57632-w
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease in which immune cells infiltrate the central nervous system and promote deterioration of myelin and neurodegeneration. The capacity to regenerate myelin in the central nervous system diminishes with age. In this study, researchers used 2- to 3-month-old (young), 12-month-old (middle-aged), and 18- to 22-month-old (aged) C57BL/6 male and female mice. Results showed an upregulation of the senescence marker P16ink4a (P16) in microglial and macrophage cells within demyelinated lesions. Notably, treatment of senescent cells using genetic and pharmacological senolytic methods leads to enhanced remyelination in young and middle-aged mice but fails to improve remyelination in aged mice. These results suggest that therapeutic targeting of senescence-associated secretory phenotype components may improve remyelination in aging and MS. Supported by ORIP (R24OD036199), NIA, NINDS, and NIMH.
A Comprehensive Atlas of AAV Tropism in the Mouse
Walkey et al., Molecular Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39863928
Over the past three decades, adeno-associated viruses (AAVs) have emerged as the leading viral vector for in vivo gene therapy. This study presents a comprehensive atlas of AAV tropism in male and female mice, evaluating 10 naturally occurring AAV serotypes across 22 tissues using systemic delivery. Researchers employed a fluorescent protein activation approach to visualize AAV transduction patterns and detected transduction of unexpected tissues, including in adrenal glands, testes, and ovaries. Biodistribution closely matched the fluorescent signal intensity. This publicly available data set provides valuable insights into AAV vector targeting and supports optimal serotype selection for basic research and preclinical gene therapy applications in murine models. Supported by ORIP (U42OD026645, U42OD035581, U42OD026635), NCI, NHLBI, NICHD, and NIDDK.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Ultrasoft Platelet-Like Particles Stop Bleeding in Rodent and Porcine Models of Trauma
Nellenbach et al., Science Translational Medicine. 2024.
https://www.science.org/doi/10.1126/scitranslmed.adi4490
Platelet transfusions are the current standard of care to control bleeding in patients following acute trauma, but their use is limited by short shelf life and limited supply. Immunogenicity and contamination risks also are a concern. Using ultrasoft and highly deformable nanogels coupled to fibrin-specific antibody fragments, researchers developed synthetic platelet-like particles (PLPs) as an alternative for immediate treatment of uncontrolled bleeding. They report that PLPs reduced bleeding and facilitated healing of injured tissue in mice, rat, and swine models (sex not specified) for traumatic injury. These findings can inform further translational studies of synthetic PLPs for the treatment of uncontrolled bleeding in a trauma setting. Supported by ORIP (T32OD011130) and NHLBI.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
Deep Analysis of CD4 T Cells in the Rhesus CNS During SIV Infection
Elizaldi et al., PLOS Pathogens. 2023.
https://pubmed.ncbi.nlm.nih.gov/38060615/
Systemic HIV infection results in chronic inflammation that causes lasting damage to the central nervous system (CNS), despite long-term antiretroviral therapy (ART). Researchers studied neurocognitive outcomes in male and female rhesus macaques infected with simian immunodeficiency virus (SIV) using an ART regimen simulating suboptimal adherence; one group received no ART, and the other received ART with periodic interruptions. Using single-cell transcriptomic profiling, the researchers also identified molecular programs induced in the brain upon infection. They found that acute infection led to marked imbalance in the CNS CD4/CD8 T‑cell ratio, which persisted into the chronic phase. The studies provide insight into the role of CD4 T cells in the CNS during HIV infection. Supported by ORIP (P51OD011107, K01OD023034), NIA, NIAID, and NCI.