Selected Grantee Publications
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
A Revamped Rat Reference Genome Improves the Discovery of Genetic Diversity in Laboratory Rats
de Jong, Cell Genomics. 2024.
https://www.cell.com/cell-genomics/fulltext/S2666-979X(24)00069-7
Rattus norvegicus has been used in many fields of study related to human disease; its genome was sequenced shortly after the genomes of Homo sapiens and Mus musculus. Investigators report extensive analyses of the improvements in mRatBN7.2, compared with the previous version. They conducted a broad analysis of a whole-genome sequencing data set of 163 samples from 120 inbred rat strains and substrains. Several additional resources have been created. This new assembly and its associated resources create a more solid platform for research on the many dimensions of physiology, behavior, and pathobiology of rats and can provide more reliable and meaningful translation of findings to human populations. Supported by ORIP (R24OD024617), NHGRI, NHLBI, and NIDA.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
Identification of Constrained Sequence Elements Across 239 Primate Genomes
Kuderna et al., Nature. 2024.
https://pubmed.ncbi.nlm.nih.gov/38030727/
Functional genomic elements that have acquired selective constraints specific to the primate order are prime candidates for understanding evolutionary changes in humans, but the selective constraints specific to the phylogenetic branch from which the human species ultimately emerged remain largely unidentified. Researchers constructed a genome-wide multiple sequence alignment of 239 primate species to better characterize constraint at noncoding regulatory sequences in the human genome. Their work reveals noncoding regulatory elements that are under selective constraint in primates but not in other placental mammals and are enriched for variants that affect human gene expression and complex traits in diseases. These findings highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals. Supported by ORIP (P40OD024628), NHGRI, NIA, and NICHD.
Newly Identified Roles for PIEZO1 Mechanosensor in Controlling Normal Megakaryocyte Development and in Primary Myelofibrosis
Abbonante et al., American Journal of Hematology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38165047/
Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation are only partially understood. The authors report that PIEZO1, a mechanosensitive cation channel, is expressed in mouse and human Mks, and activation of PIEZO1 increased the number of immature Mks in mice. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Together, these data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation might contribute to aggravating disease. Supported by ORIP (K01OD025290), NHGRI, NHLBI, and NCATS.
The Monarch Initiative in 2024: An Analytic Platform Integrating Phenotypes, Genes and Diseases Across Species
Putman et al., Nucleic Acids Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38000386/
The Monarch Initiative aims to bridge the gap between the genetic variations, environmental determinants, and phenotypic outcomes critical for translational research. The Monarch app provides researchers access to curated data sets with information on genes, phenotypes, and diseases across species and advanced analysis tools for such diverse applications as variant prioritization, deep phenotyping, and patient profile matching. Researchers describe upgrades to the app, including scalable cloud-based infrastructure, simplified data ingestion and knowledge graph integration systems, enhanced data mapping and integration standards, and a new user interface with novel search and graph navigation features. A customized plugin for OpenAI’s ChatGPT allows the use of large language models to interrogate knowledge in the Monarch graph and increase the reliability of the responses of Monarch’s analytic tools. These upgrades will enhance clinical diagnosis and the understanding of disease mechanisms. Supported by ORIP (R24OD011883), NLM, and NHGRI.
Whole Genome Analysis for 163 gRNAs in Cas9-Edited Mice Reveals Minimal Off-Target Activity
Peterson et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04974-0
CRISPR/Cas9 genome editing offers potential as a treatment for genetic diseases in humans. Using whole-genome sequencing, investigators assessed the occurrence of Streptococcus pyogenes Cas9–induced off-target mutagenesis in Cas9-edited founder mice. Sequencing and computational analysis indicate that the risk of Cas9 cutting at predicted off-target sites is lower than random genetic variation introduced into the genomes of inbred mice through mating. These findings will inform future design and use of Cas9-edited animal models and can provide context for evaluating off-target potential in genetically diverse patient populations. Supported by ORIP (UM1OD023221, UM1OD023222) and NHGRI.
Resolution of Structural Variation in Diverse Mouse Genomes Reveals Chromatin Remodeling due to Transposable Elements
Ferraj et al., Cell Genomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203049/
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. Here, investigators used long-read whole genome sequencing to assemble the genomes of 20 diverse inbred laboratory strains of mice. From whole-genome comparisons, they generated a sequence-resolved callset of 413,758 structural variants. These data are presented as a comprehensive resource that can be used for future genomic studies, aid in modeling and studying the effects of genetic variation, and enhance genotype-to-phenotype research. Supported by ORIP (R24OD021325), NCI, NIGMS, and NHGRI.
Topologically Associating Domain Boundaries Are Required for Normal Genome Function
Rajderkar et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04819-w
Eukaryotic genomes fold into topologically associating domains (TADs), sub-megabase-scale chromatin segments characterized by high intra-domain chromatin contact frequency. Investigators selected eight independent TAD boundaries in the vicinity of genes active during embryonic development, individually deleted these boundaries from the mouse genome, and systematically examined the consequences on survival, genome organization, gene expression, and development. Results of the studies demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to consider the potential pathogenicity of deletions affecting TAD boundaries in clinical genetics screening. Supported by ORIP (UM1OD023221), NIGMS, and NHGRI.