Selected Grantee Publications
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Lesion Environments Direct Transplanted Neural Progenitors Towards a Wound Repair Astroglial Phenotype in Mice
O’Shea et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33382-x
Neural progenitor cells (NPCs) are potential cell transplantation therapies for central nervous system (CNS) injuries. Investigators derived NPCs expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling. Their findings reveal similarities between the transcriptional profiles, cellular morphologies, and functional features of cells transplanted into subacute CNS lesions and host astroglia. The astroglia are stimulated by injuries to proliferate and adopt a naturally occurring, border-forming wound repair phenotype in mice of both sexes. Understanding the autonomous cues instructing NPCs transplanted in CNS host tissue will be fundamental to therapeutic NPC transplantation. Supported by ORIP (U42OD010921,U42OD011174, UM1OD023222) and NINDS.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
A Molecularly Integrated Amygdalo-Fronto-Striatal Network Coordinates Flexible Learning and Memory
Li et al., Nature Neuroscience. 2022.
https://www.doi.org/10.1038/s41593-022-01148-9
Behavioral flexibility is critical for navigating dynamic environments and requires the durable encoding and retrieval of new memories to guide future choice. The orbitofrontal cortex (OFC) supports outcome-guided behaviors, but the coordinated neural circuitry and cellular mechanisms by which OFC connections sustain flexible learning and memory are not understood fully. Using a mouse model, researchers demonstrated that the OFC neuronal ensembles store a memory trace for newly learned information. They describe the directional transmission of information within an integrated amygdalo-fronto-striatal circuit across time. Supported by ORIP (P51OD011132), NIDA, NIMH, and NINDS.
Parallel Processing, Hierarchical Transformations, and Sensorimotor Associations along the “Where” Pathway
Doudlah et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.78712
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and map those representations to motor responses. These capabilities are supported by the dorsal “where” pathway in the brain, but the specific contributions of areas along this pathway have remained elusive. Using a rhesus macaque model, researchers compared neuronal activity in two areas along the “where” pathway that bridge the parieto-occipital junction: intermediate visual area V3A and the caudal intraparietal (CIP) area. Neuronal activity was recorded while the animals made perceptual decisions based on judging the tilt of 3D visual patterns. The investigators found that CIP shows higher-order spatial representations and more choice-correlated responses, which support a V3A-to-CIP hierarchy. The researchers also discovered modulation of V3A activity by extraretinal factors, suggesting that V3A might be better characterized as contributing to higher-order behavioral functions rather than low-level visual feature processing. Supported by ORIP (P51OD011106), NEI, NICHD, and NINDS.
Neuroprotective Effects of Electrical Stimulation Following Ischemic Stroke in Non-Human Primates
Zhou et al., Institute of Electrical and Electronics Engineers. 2022.
https://www.doi.org/10.1109/EMBC48229.2022.9871335
Using rhesus macaques of both sexes, researchers identified a novel treatment for ischemic stroke, which occurs when brain cells die due to lack of oxygen. The treatment consisted of applying 60 minutes of electrical brain stimulation shortly after the stroke. The animals that received electrical stimulation had less brain damage, fewer cell deaths, and more protective neural activity patterns than the monkeys that did not receive electrical stimulation. Future work can determine whether this stimulation can be applied noninvasively, as well as how to improve the electrical stimulation patterns to optimize health outcomes for stroke patients. Supported by ORIP (P51OD010425) and NINDS.
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.
Functional and Ultrastructural Analysis of Reafferent Mechanosensation in Larval Zebrafish
Odstrcil et al., Current Biology. 2022.
https://www.sciencedirect.com/science/article/pii/S096098222101530X
All animals need to differentiate between exafferent stimuli (caused by the environment) and reafferent stimuli (caused by their own movement). Researchers characterized how hair cells in zebrafish larvae discriminate between reafferent and exafferent signals. Dye labeling of the lateral line nerve and functional imaging was combined with ultra-structural electron microscopy circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies, and dopaminergic signals from the hypothalamus may affect threshold modulation. Findings suggest that this circuit is the core implementation of mechanosensory reafferent suppression in these young animals. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.