Selected Grantee Publications
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Inflammatory Blockade Prevents Injury to the Developing Pulmonary Gas Exchange Surface in Preterm Primates
Toth et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abl8574
Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25% to 40% of preterm births. Investigators used a prenatal rhesus macaque model to assess how fetal inflammation could affect lung development. They found that inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure. Blockade of the inflammatory cytokines IL-1β and TNFα ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells. These data provide new insight into key mechanisms of developmental lung injury and highlight targeted inflammatory blockade as a potential therapeutic approach to ameliorate lung injury in the neonatal population. Supported by ORIP (P51OD011107), NIAID, NHLBI, NICHD, and NIEHS.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.
Sequence Diversity Analyses of an Improved Rhesus Macaque Genome Enhance its Biomedical Utility
Warren et al., Science. 2020.
https://science.sciencemag.org/content/370/6523/eabc6617
Investigators sequenced and assembled an Indian-origin female rhesus macaque (RM) genome using a multiplatform genomics approach that included long-read sequencing, extensive manual curation, and experimental validation to generate a new comprehensive annotated reference genome. As a result, 99.7% of the gaps in the earlier draft genome are now closed, and more than 99% of the genes are represented. Whole-genome sequencing of 853 RMs of both sexes identified 85.7 million single-nucleotide variants and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay. The improved assembly of segmental duplications, new lineage-specific genes and expanded gene families provide a framework for developing noninvasive NHP models for human disease, as well as studies of genetic variation and phenotypic consequences. Supported by ORIP (P51OD011106, P51OD011107, P51OD011132, P51OD011104, U42OD024282, U42OD010568, R24OD011173, R24OD021324, R24OD010962), NHGRI, NIMH, NHLBI, and NIGMS.
Fructose Stimulated De Novo Lipogenesis Is Promoted by Inflammation
Jelena et al., Nature Metabolism. 2020.
https://pubmed.ncbi.nlm.nih.gov/32839596
Non-alcoholic fatty liver disease (NAFD) affects 30% of adult Americans. While NAFD starts as simple steatosis with little liver damage, its severe manifestation as non-alcoholic steatohepatitis (NASH) is a leading cause of liver failure, cirrhosis, and cancer. Fructose consumption is proposed to increase the risk of hepatosteatosis and NASH. Excessive intake of fructose causes barrier deterioration and low-grade endotoxemia. Using a mouse model, the study examined the mechanism of how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis. The results demonstrated that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signaling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to fatty acid in both mouse and human hepatocytes. The finding may be of relevance to several common liver diseases and metabolic disorders. Supported by ORIP (S10OD020025), NCI, NIEHS, NIDDK, NIAID, and NIAAA.
Fluorescence-Based Sorting of Caenorhabditis elegans via Acoustofluidics
Zhang et al., Lab on a Chip. 2020.
The authors present an integrated acoustofluidic chip capable of identifying worms of interest based on expression of a fluorescent protein in a continuous flow and then separate them in a high-throughput manner. Utilizing planar fiber optics, their acoustofluidic device requires no temporary immobilization of worms for interrogation/detection, thereby improving the throughput. The device can sort worms of different developmental stages (L3 and L4 stage worms) at high throughput and accuracy. In their acoustofluidic chip, the time to complete the detection and sorting of one worm is only 50 ms, which outperforms nearly all existing microfluidics-based worm sorting devices. Supported by ORIP (R43OD024963), NIEHS, and NIDDK.