Selected Grantee Publications
Mendelian Gene Identification through Mouse Embryo Viability Screening
Cacheiro et al., Genome Medicine. 2022.
https://www.doi.org/10.1186/s13073-022-01118-7
The investigators dissected phenotypic similarities between patients and model organisms by assessing the embryonic stage at which homozygous loss of function results in lethality in mice of both sexes obtained from the International Mouse Phenotyping Consortium. Information on knockout mouse embryo lethality can be used to prioritize candidate genes associated with certain disorders. Access to unsolved cases from rare-disease genome sequencing programs allows for the screening of those genes for potentially pathogenic variants, which could lead to a diagnosis and new potential treatment options to inform the management of human disease. Supported by ORIP (UM1OD023221, UM1OD023222, U42OD011174) and NHGRI.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
A Multidimensional Metabolomics Workflow to Image Biodistribution and Evaluate Pharmacodynamics in Adult Zebrafish
Jackstadt et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049550
The evaluation of tissue distribution and pharmacodynamic properties of a drug is essential but often expensive in clinical research. The investigators developed a multidimensional metabolomics platform to evaluate drug activity that integrates mass spectrometry–based imaging, absolute drug quantitation, in vivo isotope tracing, and global metabolome analysis in zebrafish. They validated this platform by evaluating whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate and its impact on the systemic metabolism of adult zebrafish. This work suggests that the multidimensional metabolomics platform is a cost-effective method for evaluating on- and off-target effects of drugs. Supported by ORIP (R24OD024624) and NIEHS.
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.
Adverse Biobehavioral Effects in Infants Resulting from Pregnant Rhesus Macaques’ Exposure to Wildfire Smoke
Capitanio et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-29436-9
Exposure to wildfire smoke (WFS) is a growing health concern as wildfires increase in number and size due to climate change. Researchers found that developing rhesus monkeys exposed to WFS from the Camp Fire in California (November 2018) during the first third of gestation exhibited greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated. Analysis of a historical control cohort did not support the alternative hypothesis that conception timing alone explained the results. These findings suggest that WFS may have a teratogenic effect on neural development in the primate fetus. Supported by ORIP (P51OD011107, R24OD010962) and NIEHS.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Inflammatory Blockade Prevents Injury to the Developing Pulmonary Gas Exchange Surface in Preterm Primates
Toth et al., Science Translational Medicine. 2022.
https://www.doi.org/10.1126/scitranslmed.abl8574
Chorioamnionitis, an inflammatory condition affecting the placenta and fluid surrounding the developing fetus, affects 25% to 40% of preterm births. Investigators used a prenatal rhesus macaque model to assess how fetal inflammation could affect lung development. They found that inflammatory injury directly disrupted the developing gas exchange surface of the primate lung, with extensive damage to alveolar structure. Blockade of the inflammatory cytokines IL-1β and TNFα ameliorated LPS-induced inflammatory lung injury by blunting stromal responses to inflammation and modulating innate immune activation in myeloid cells. These data provide new insight into key mechanisms of developmental lung injury and highlight targeted inflammatory blockade as a potential therapeutic approach to ameliorate lung injury in the neonatal population. Supported by ORIP (P51OD011107), NIAID, NHLBI, NICHD, and NIEHS.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.