Selected Grantee Publications
Simultaneous Evaluation of Treatment Efficacy and Toxicity for Bispecific T-Cell Engager Therapeutics in a Humanized Mouse Model
Yang et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300040R
Immuno-oncology–based therapies are an evolving powerful treatment strategy that targets the immune system and harnesses it to kill tumor cells directly. Investigators describe the novel application of a humanized mouse model that can simultaneously evaluate the efficacy of bispecific T cell engagers to control tumor burden and the development of cytokine release syndrome. The model also captures variability in responses for individual patients. Supported by ORIP (R24OD026440), NIAID, NCI, and NIDDK.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
Giardia Hinders Growth by Disrupting Nutrient Metabolism Independent of Inflammatory Enteropathy
Giallourou et al., Nature Communications. 2023.
https://www.nature.com/articles/s41467-023-38363-2
Giardia lamblia is one of the most common intestinal pathogens among children in low- and middle-income countries. Investigators performed translational investigations using the Malnutrition and Enteric Diseases (MAL-ED) male and female cohort, as well as mice of both sexes, to identify mechanistic pathways that might explain Giardia-induced effects on early childhood growth. They identified signatures in the urinary metabolome of young children, suggesting that host growth restriction during infection is mediated by dysregulated amino acid metabolism. Supported by ORIP (P40OD010995), NIAID, and NIDDK.
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.
Resolution of Structural Variation in Diverse Mouse Genomes Reveals Chromatin Remodeling due to Transposable Elements
Ferraj et al., Cell Genomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203049/
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. Here, investigators used long-read whole genome sequencing to assemble the genomes of 20 diverse inbred laboratory strains of mice. From whole-genome comparisons, they generated a sequence-resolved callset of 413,758 structural variants. These data are presented as a comprehensive resource that can be used for future genomic studies, aid in modeling and studying the effects of genetic variation, and enhance genotype-to-phenotype research. Supported by ORIP (R24OD021325), NCI, NIGMS, and NHGRI.
Topologically Associating Domain Boundaries Are Required for Normal Genome Function
Rajderkar et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04819-w
Eukaryotic genomes fold into topologically associating domains (TADs), sub-megabase-scale chromatin segments characterized by high intra-domain chromatin contact frequency. Investigators selected eight independent TAD boundaries in the vicinity of genes active during embryonic development, individually deleted these boundaries from the mouse genome, and systematically examined the consequences on survival, genome organization, gene expression, and development. Results of the studies demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to consider the potential pathogenicity of deletions affecting TAD boundaries in clinical genetics screening. Supported by ORIP (UM1OD023221), NIGMS, and NHGRI.
Hematopoietic Stem Cells Preferentially Traffic Misfolded Proteins to Aggresomes and Depend on Aggrephagy to Maintain Protein Homeostasis
Chua et al., Cell Stem Cell. 2023.
https://pubmed.ncbi.nlm.nih.gov/36948186/
Investigators studied the mechanism of hematopoietic stem cells (HSCs) being dependent on managing proteostasis. Their findings demonstrated that HSCs preferentially depend on aggrephagy, a form of autophagy, to maintain proteostasis. When aggrephagy is disabled, HSCs compensate by increasing proteasome activity, but proteostasis is ultimately disrupted as protein aggregates accumulate and HSC function is impaired. The investigators also showed that Bag3 deficiency blunts aggresome formation in HSCs, resulting in protein aggregate accumulation, myeloid-biased differentiation, and diminished self-renewal activity, thus demonstrating Bag3 as a regulator of HSC proteostasis. HSC aging is associated with loss of aggresomes and reduced autophagic flux. Protein degradation pathways are thus configured in young-adult HSCs to preserve proteostasis and fitness but become dysregulated during aging. Supported by ORIP (S10OD032316, S10OD021831), NCI, and NIDDK.
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
Prolonged Experimental CD4+ T-Cell Depletion Does Not Cause Disease Progression In SIV-Infected African Green Monkeys
Le Hingrat et al., Nature Communications. 2023.
https://www.nature.com/articles/s41467-023-36379-2
Chronically simian immunodeficiency virus (SIV)–infected African green monkeys (AGMs) partially recover mucosal CD4+ T cells, maintain gut integrity, and do not progress to AIDS. Investigators assessed the impact of prolonged, antibody-mediated CD4+ T cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T cells and more than 90% of mucosal CD4+ T cells were depleted. Plasma viral loads and cell-associated viral RNA in tissues were lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintained gut integrity, controlled immune activation, and did not progress to AIDS. Therefore, CD4+ T cell depletion is not a determinant of SIV-related gut dysfunction when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T cell restoration in SIV-infected AGMs. Supported by ORIP (P40OD028116), NIAID, NIDDK, and NHLBI.