Selected Grantee Publications
Two Neuronal Peptides Encoded from a Single Transcript Regulate Mitochondrial Complex III in Drosophila
Bosch et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.82709
Transcripts with small open-reading frames (smORFs) are underrepresented in genome annotations. Functions of peptides encoded by smORFs are poorly understood. The investigators systematically characterized human-conserved smORF genes in Drosophila and found two peptides, Sloth1 and Sloth2, that are highly expressed in neurons. They showed that Sloth1 and Sloth2 are paralogs with high sequence similarity but are not functionally redundant. Loss of either peptide resulted in lethality, impaired mitochondrial function, and neurodegeneration. This work suggests the value of phenotypic analysis of smORFs using Drosophila as a model. Supported by ORIP (R24OD019847), NHGRI, and NIGMS.
Mendelian Gene Identification through Mouse Embryo Viability Screening
Cacheiro et al., Genome Medicine. 2022.
https://www.doi.org/10.1186/s13073-022-01118-7
The investigators dissected phenotypic similarities between patients and model organisms by assessing the embryonic stage at which homozygous loss of function results in lethality in mice of both sexes obtained from the International Mouse Phenotyping Consortium. Information on knockout mouse embryo lethality can be used to prioritize candidate genes associated with certain disorders. Access to unsolved cases from rare-disease genome sequencing programs allows for the screening of those genes for potentially pathogenic variants, which could lead to a diagnosis and new potential treatment options to inform the management of human disease. Supported by ORIP (UM1OD023221, UM1OD023222, U42OD011174) and NHGRI.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Early Treatment Regimens Achieve Sustained Virologic Remission in Infant Macaques Infected with SIV at Birth
Wang et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32554-z
About 150,000 children are infected postnatally with HIV each year. Early antiretroviral therapy (ART) in infants with HIV can reduce viral reservoir size, but ART-free virologic remission has not been achieved. The researchers hypothesized that proviral reservoir seeding in infants exposed to HIV might differ from that in adults. They characterized viral reservoirs in neonatal rhesus macaques of both sexes inoculated with simian immunodeficiency virus (SIV) at birth and given combination ART. The researchers reported that 9 months of treatment initiated at day 3 resulted in a sustained virologic remission, suggesting that early intervention with proper treatment regimens could be an effective strategy. Supported by ORIP (P51OD011104), NIAID, NICHD, and NIDCR.
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.
A Clade C HIV-1 Vaccine Protects Against Heterologous SHIV Infection by Modulating IgG Glycosylation and T Helper Response in Macaques
Sahoo et al., Science Immunology. 2022.
https://www.doi.org/10.1126/sciimmunol.abl4102
Vaccines for HIV-1 capable of generating a broadly cross-reactive neutralizing antibody response are needed urgently. The researchers tested the protective efficacy of a clade C HIV-1 vaccination regimen in male rhesus macaques. The vaccine was administered either orally using a needle-free injector or via parenteral injection. Significant protection was observed for both vaccination routes following the simian–human immunodeficiency virus (SHIV) challenge, with an estimated efficacy of 68% per exposure. The glycosylation profile of IgG and HIV-resistant helper T cell response contributes to the protection. Supported by ORIP (P51OD011132), NIAID, and NIDCR.
Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope–Specific Plasma Antibodies in Infant Rhesus Macaques
Vijayan et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.840976
An effective vaccine is needed to reduce HIV infections, particularly among younger people. The initiation of an HIV vaccine regimen in early life could allow the development of mature HIV‑specific antibody responses that protect against infection. The investigators compared the effects of two vaccine regimens in infant rhesus macaques (sex not specified). Both vaccines induced a rapid innate response, indicated by elevated inflammatory plasma cytokines and altered gene expression. By performing a network analysis, the investigators identified differentially expressed genes associated with B cell activation. These findings suggest that vaccine-induced immunity can be optimized by modulating specific antibody and T cell responses. Supported by ORIP (P51OD011107), NCI, NIAID, and NIDCR.
Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection
Curtis et al., mSphere. 2022.
https://www.doi.org/10.1128/msphere.00839-21
A tailored, effective HIV vaccine is needed to prevent mother-to-child viral transmission. In nonhuman primate models, infection with simian–human immunodeficiency virus (SHIV) can be prevented by administering broadly neutralizing HIV envelope (Env)–specific antibodies. Investigators tested the efficacy of an intramuscular vaccine regimen against SHIV infection in male and female infant rhesus macaques. The vaccine induced Env-specific antibodies in plasma, with antibody-dependent cellular cytotoxicity and phagocytic function. These antibodies, however, were insufficient for protection against infection. Future studies could focus on improving the breadth of antibody response and improving cell-mediated immunity. Supported by ORIP (P51OD011107), NCI, NIAID, and NIDCR.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.