Selected Grantee Publications
- Clear All
- 5 results found
- nhgri
- nibib
- Microscopy
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Synthetic Protein Circuits for Programmable Control of Mammalian Cell Death
Xia et al., Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38657604/
Natural cell-death pathways have been shown to eliminate harmful cells and shape immunity. Researchers used synthetic protein-level cell-death circuits, collectively termed “synpoptosis” circuits, to proteolytically regulate engineered executioner proteins and mammalian cell death. They show that the circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. This work provides a foundation for programmable control of mammalian cell death. Future studies could focus on programmable control of cell death in various contexts, including cancer, senescence, fibrosis, autoimmunity, and infection. Supported by ORIP (F30OD036190) and NIBIB.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.