Selected Grantee Publications
Osteopontin Is an Integral Mediator of Cardiac Interstitial Fibrosis in Models of Human Immunodeficiency Virus Infection
Robinson et al., The Journal of Infectious Diseases. 2023.
https://www.doi.org/10.1093/infdis/jiad149
HIV infection is associated with increased risk of cardiovascular disease. Plasma osteopontin (Opn) is correlated with cardiac pathology, but more work is needed to understand the underlying mechanisms driving cardiac fibrosis. Researchers explored this topic using mouse embryonic fibroblasts, male macaques, and humanized mice of both sexes. They reported the accumulation of Opn in the heart with simian immunodeficiency virus infection. Systemic inhibition of Opn can prevent HIV-associated interstitial fibrosis in the left ventricle. These findings suggest that Opn could be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV. Supported by ORIP (P51OD011104), NIAID, NHLBI, NIMH, and NINDS.
Whole Genome Analysis for 163 gRNAs in Cas9-Edited Mice Reveals Minimal Off-Target Activity
Peterson et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04974-0
CRISPR/Cas9 genome editing offers potential as a treatment for genetic diseases in humans. Using whole-genome sequencing, investigators assessed the occurrence of Streptococcus pyogenes Cas9–induced off-target mutagenesis in Cas9-edited founder mice. Sequencing and computational analysis indicate that the risk of Cas9 cutting at predicted off-target sites is lower than random genetic variation introduced into the genomes of inbred mice through mating. These findings will inform future design and use of Cas9-edited animal models and can provide context for evaluating off-target potential in genetically diverse patient populations. Supported by ORIP (UM1OD023221, UM1OD023222) and NHGRI.
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
CD8+ T Cells Promote HIV Latency by Remodeling CD4+ T Cell Metabolism to Enhance Their Survival, Quiescence, and Stemness
Mutascio et al., Immunity. 2023.
https://www.doi.org/10.1016/j.immuni.2023.03.010
An HIV reservoir persists following antiretroviral therapy, representing the main barrier to an HIV cure. Using a validated in vitro model, investigators explored the mechanism by which CD8+ T cells promote HIV latency and inhibit latency reversal in HIV-infected CD4+ T cells. They reported that CD8+ T cells favor the establishment of HIV latency by modulating metabolic, stemness, and survival pathways that correlate with the downregulation of HIV expression and promote HIV latency. In future studies, comparative analyses may provide insight into common molecular mechanisms in the silencing of HIV expression by CD8+ T cells and macrophages, which can be applied to new intervention strategies that target the HIV reservoir. Supported by ORIP (P51OD011132, S10OD026799), NIAID, NIDDK, NIDA, NHLBI, and NINDS.
Resolution of Structural Variation in Diverse Mouse Genomes Reveals Chromatin Remodeling due to Transposable Elements
Ferraj et al., Cell Genomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10203049/
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. Here, investigators used long-read whole genome sequencing to assemble the genomes of 20 diverse inbred laboratory strains of mice. From whole-genome comparisons, they generated a sequence-resolved callset of 413,758 structural variants. These data are presented as a comprehensive resource that can be used for future genomic studies, aid in modeling and studying the effects of genetic variation, and enhance genotype-to-phenotype research. Supported by ORIP (R24OD021325), NCI, NIGMS, and NHGRI.
Topologically Associating Domain Boundaries Are Required for Normal Genome Function
Rajderkar et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04819-w
Eukaryotic genomes fold into topologically associating domains (TADs), sub-megabase-scale chromatin segments characterized by high intra-domain chromatin contact frequency. Investigators selected eight independent TAD boundaries in the vicinity of genes active during embryonic development, individually deleted these boundaries from the mouse genome, and systematically examined the consequences on survival, genome organization, gene expression, and development. Results of the studies demonstrate the importance of TAD boundary sequences for in vivo genome function and reinforce the critical need to consider the potential pathogenicity of deletions affecting TAD boundaries in clinical genetics screening. Supported by ORIP (UM1OD023221), NIGMS, and NHGRI.
Pancreatic Cancer Cells Upregulate LPAR4 in Response to Isolation Stress to Promote an ECM-Enriched Niche and Support Tumour Initiation
Wu et al., Nature Cell Biology. 2023.
https://pubmed.ncbi.nlm.nih.gov/36646789/
Understanding drivers of tumor initiation is critical for cancer therapy. Investigators found transient increase of lysophosphatidic acid receptor 4 (LPAR4) in pancreatic cancer cells exposed to environmental stress or chemotherapy. LPAR4 induced tumor initiation, stress tolerance, and drug resistance by downregulating miR-139-5p, a tumor suppressor, and upregulating fibronectin. These results indicate that LPAR4 enhances cell-autonomous production of a fibronectin-rich extracellular matrix (ECM), allowing cells to survive isolation stress and compensate for the absence of stromal-derived factors by creating their own tumor-initiating niche. Supported by ORIP (K01OD030513, T32OD017863), NCI, and NHLBI.
Prolonged Experimental CD4+ T-Cell Depletion Does Not Cause Disease Progression In SIV-Infected African Green Monkeys
Le Hingrat et al., Nature Communications. 2023.
https://www.nature.com/articles/s41467-023-36379-2
Chronically simian immunodeficiency virus (SIV)–infected African green monkeys (AGMs) partially recover mucosal CD4+ T cells, maintain gut integrity, and do not progress to AIDS. Investigators assessed the impact of prolonged, antibody-mediated CD4+ T cell depletion on gut integrity and natural history of SIV infection in AGMs. All circulating CD4+ T cells and more than 90% of mucosal CD4+ T cells were depleted. Plasma viral loads and cell-associated viral RNA in tissues were lower in CD4+-cell-depleted animals. CD4+-cell-depleted AGMs maintained gut integrity, controlled immune activation, and did not progress to AIDS. Therefore, CD4+ T cell depletion is not a determinant of SIV-related gut dysfunction when gastrointestinal tract epithelial damage and inflammation are absent, suggesting that disease progression and resistance to AIDS are independent of CD4+ T cell restoration in SIV-infected AGMs. Supported by ORIP (P40OD028116), NIAID, NIDDK, and NHLBI.
CD8+ Lymphocytes Do Not Impact SIV Reservoir Establishment under ART
Statzu et al., Nature Microbiology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894752/
The HIV-1 latent reservoir has been shown to persist following antiretroviral therapy (ART), but the mechanisms underlying the establishment and maintenance of the reservoir are not fully understood. Using rhesus macaques of both sexes, investigators examined the effects of CD8+ T cells on formation of the latent reservoir with simian immunodeficiency virus (SIV) infection. They found that CD8+ T cell depletion resulted in slower decline of viremia but did not change the frequency of infected CD4+ T cells in the blood or lymph nodes. Additionally, the size of the persistent reservoir was unchanged. These findings suggest that the viral reservoir is established largely independent of SIV-specific cytotoxic T lymphocyte control. Supported by ORIP (P51OD011132), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
TMEM161B Modulates Radial Glial Scaffolding in Neocortical Development
Wang et al., PNAS. 2023.
https://www.pnas.org/doi/10.1073/pnas.2209983120
Neocortical folding (i.e., gyrification) is a fundamental evolutionary mechanism allowing the expansion of cortical surface area and increased cognitive function. This study identifies TMEM161B in gyral spacing in humans, likely affecting radial glial cell polarity through effects on the actin cytoskeleton. Patients carrying TMEM161B mutations exhibit striking neocortical polymicrogyria and intellectual disability. TMEM161B knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. The data implicating TMEM161B in murine holoprosencephaly may suggest shared mechanisms between the formation of the brain midline and cortical gyrification. Supported by ORIP (U54OD030187), NINDS, and NHGRI.
 
         
    
