Selected Grantee Publications
- Clear All
- 3 results found
- nei
- CRISPR
- Spectrometry
Systematic Ocular Phenotyping of 8,707 Knockout Mouse Lines Identifies Genes Associated With Abnormal Corneal Phenotypes
Vo et al., BMC Genomics. 2025.
https://pubmed.ncbi.nlm.nih.gov/39833678
Corneal dysmorphologies (CDs) are a group of acquired but predominantly genetically inherited eye disorders that cause progressive vision loss and can be associated with systemic abnormalities. This study aimed to identify candidate CD genes in humans by looking at knockout mice with targeted deletions of orthologous genes that exhibited statistically significant corneal abnormalities. Analysis of data from 8,707 knockout mouse lines identified 213 candidate CD genes; 176 (83%) genes have not been implicated previously in CD. Bioinformatic analyses implicated candidate genes in several signaling pathways (e.g., integrin signaling pathway, cytoskeletal regulation by Rho GTPase, FAS signaling pathway), which are potential therapeutic targets. Supported by ORIP (U42OD011175, R03OD032622, UM1OD023221), NEI, and NHGRI.
Effects of Ex Vivo Blood Anticoagulation and Preanalytical Processing Time on the Proteome Content of Platelets
Yunga et al., Journal of Thrombosis and Haemostasis. 2022.
https://www.doi.org/10.1111/jth.15694
The investigators studied how various blood anticoagulation options and processing times affect platelet function and protein content ex vivo. Using platelet proteome quantification and triple quadrupole mass spectrometry, they found that anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Heparinized blood had higher levels of histone and neutrophil-associated proteins, as well as formation of platelet–neutrophil extracellular trap interactions in whole blood ex vivo. The study indicates that different anticoagulants and preanalytical processing times affect platelet function and platelet protein content ex vivo, suggesting more rigorous phenotyping strategies for platelet omics studies. Supported by ORIP (S10OD012246), NHLBI, NCI and NEI.
Identification of Basp1 as a Novel Angiogenesis-regulating Gene by Multi-Model System Studies
Khajavi et al., FASEB Journal. 2021.
https://pubmed.ncbi.nlm.nih.gov/33899275/
The authors previously used genetic diversity in inbred mouse strains to identify quantitative trait loci (QTLs) responsible for differences in angiogenic response. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. To investigate its role in vivo, they knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. They further showed that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results provide the first in vivo evidence to indicate the role of basp1 as an angiogenesis-regulating gene. Supported by ORIP (R24OD017870) and NEI.