Selected Grantee Publications
Parallel Processing, Hierarchical Transformations, and Sensorimotor Associations along the “Where” Pathway
Doudlah et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.78712
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and map those representations to motor responses. These capabilities are supported by the dorsal “where” pathway in the brain, but the specific contributions of areas along this pathway have remained elusive. Using a rhesus macaque model, researchers compared neuronal activity in two areas along the “where” pathway that bridge the parieto-occipital junction: intermediate visual area V3A and the caudal intraparietal (CIP) area. Neuronal activity was recorded while the animals made perceptual decisions based on judging the tilt of 3D visual patterns. The investigators found that CIP shows higher-order spatial representations and more choice-correlated responses, which support a V3A-to-CIP hierarchy. The researchers also discovered modulation of V3A activity by extraretinal factors, suggesting that V3A might be better characterized as contributing to higher-order behavioral functions rather than low-level visual feature processing. Supported by ORIP (P51OD011106), NEI, NICHD, and NINDS.
Infection Order Outweighs the Role of CD4+ T Cells in Tertiary Flavivirus Exposure
Marzan-Rivera et al., iScience. 2022.
https://www.doi.org/10.1016/j.isci.2022.104764
The link between CD4+ T and B cells in immune responses to Dengue virus (DENV) and Zika virus (ZIKV) and their roles in cross-protection during heterologous infection are poorly known. The authors used CD4+ lymphocyte depletions to dissect the impact of cellular immunity on humoral responses during tertiary flavivirus infection in male macaques. CD4+ depletion in DENV/ZIKV–primed animals, followed by DENV, resulted in dysregulated adaptive immune responses. They show a delay in DENV-specific antibody titers and binding and neutralization in the DENV/ZIKV–primed, CD4-depleted animals but not in ZIKV/DENV–primed, CD4-depleted animals. This study confirms the role of CD4+ cells in priming an early humoral response during sequential flavivirus infections and suggests that the order of exposure affects the outcome of a tertiary infection. Supported by ORIP (P40OD012217), NIAID, and NIGMS.
Effects of Ex Vivo Blood Anticoagulation and Preanalytical Processing Time on the Proteome Content of Platelets
Yunga et al., Journal of Thrombosis and Haemostasis. 2022.
https://www.doi.org/10.1111/jth.15694
The investigators studied how various blood anticoagulation options and processing times affect platelet function and protein content ex vivo. Using platelet proteome quantification and triple quadrupole mass spectrometry, they found that anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Heparinized blood had higher levels of histone and neutrophil-associated proteins, as well as formation of platelet–neutrophil extracellular trap interactions in whole blood ex vivo. The study indicates that different anticoagulants and preanalytical processing times affect platelet function and platelet protein content ex vivo, suggesting more rigorous phenotyping strategies for platelet omics studies. Supported by ORIP (S10OD012246), NHLBI, NCI and NEI.
Obesity Alters Pathology and Treatment Response in Inflammatory Disease
Bapat et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-04536-0
Obesity and metabolic disease have been shown to affect immunotherapeutic outcomes. By studying classical type 2 T helper cells (TH2) in lean and obese male mouse models for atopic dermatitis, investigators found that the biologic therapies protected lean mice but exacerbated disease in obese mice. RNA sequencing and genome analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells in obese mice when compared to lean mice, indicating that PPARγ is required to prevent aberrant non-TH2 inflammation. Understanding the effects of obesity on immunological disease could inform a potential precision medicine approach to target obesity-induced immune dysregulation. Supported by ORIP (S10OD023689), NIAID, NCI, NIDDK, and NIGMS.
Presence of Natural Killer B Cells in Simian Immunodeficiency Virus–Infected Colon That Have Properties and Functions Similar to Those of Natural Killer Cells and B Cells but Are a Distinct Cell Population
Cogswell et al., mSphere. 2022.
https://www.doi.org/10.1128/jvi.00235-22
HIV infection of the gut is associated with increased mucosal inflammation, and the role of natural killer B (NKB) cells in this process requires further investigation. In this study, the researchers used rhesus and cynomolgus macaque models to characterize the function and characteristics of NKB cells in response to simian immunodeficiency virus (SIV) infection. They reported that NKB cells can kill target cells, proliferate, and express several inflammatory cytokines. The properties of NKB cells could provide insight into the inflammation observed in the gut during SIV infection, and the individual contributions of each cytokine and receptor–ligand interaction could be explored in a future study. Supported by ORIP (P51OD011106), NIAID, and NIGMS.
Reduced Infant Rhesus Macaque Growth Rates Due to Environmental Enteric Dysfunction and Association with Histopathology in the Large Intestine
Hendrickson et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-021-27925-x
Researchers characterized environmental enteric (relating to the intestines) dysfunction (EED) among infant rhesus macaques (n=80, both sexes) naturally exposed to enteric pathogens commonly linked to human growth stunting. Despite atrophy and abnormalities observed in the small intestine, poor growth trajectories and low serum tryptophan (an amino acid needed for protein and enzymes) levels were correlated with increased histopathology (microscopic tissue examination for disease manifestation) in the large intestine. This study provides insight into the mechanisms underlying EED and indicates that the large intestine may be an important target for therapeutic intervention. Supported by ORIP (P51OD011092, P51OD011107) and NIGMS.
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.
Advancing Human Disease Research with Fish Evolutionary Mutant Models
Beck et al., Trends in Genetics. 2021.
https://pubmed.ncbi.nlm.nih.gov/34334238/
Model organism research is essential to understand disease mechanisms. However, laboratory-induced genetic models can lack genetic variation and often fail to mimic disease severity. Evolutionary mutant models (EMMs) are species with evolved phenotypes that mimic human disease. They have improved our understanding of cancer, diabetes, and aging. Fish are the most diverse group of vertebrates, exhibiting a kaleidoscope of specialized phenotypes, many that would be pathogenic in humans but are adaptive in the species' specialized habitat. Evolved compensations can suggest avenues for novel disease therapies. This review summarizes current research using fish EMMs to advance our understanding of human disease. Supported by ORIP (R01OD011116), NIA, NIDA, and NIGMS.