Selected Grantee Publications
- Clear All
- 8 results found
- nei
- niddk
- Neurological
Spatiotemporal Characterization of Cyclooxygenase Pathway Enzymes During Vertebrate Embryonic Development
Leathers et al., Developmental Biology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39581452/
The cyclooxygenase (COX) pathway plays a fundamental role in embryonic development. Disruptions of the COX pathway during pregnancy cause developmental anomalies, including craniofacial clefts, impaired gut innervation, and neural tube defects in the embryo. Researchers used Gallus gallus embryos to study the expression of COX pathway enzymes during neurulation. COX-1 protein expression was upregulated in cells undergoing mitosis, whereas COX-2 protein expression was ubiquitous. This study provides spatiotemporal expression data of COX pathway enzymes at key embryonic development stages in G. gallus and guides future studies focused on defining the role of these enzymes during embryonic development. Supported by ORIP (T35OD010956), NEI, NIDCR, and NIGMS.
Disruption of Myelin Structure and Oligodendrocyte Maturation in a Macaque Model of Congenital Zika Infection
Tisoncik-Go et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49524-2
Maternal infection during pregnancy can have severe consequences on fetal development and survival. Using a pigtail macaque model for Zika virus infection, researchers show that in utero exposure of a fetus to Zika virus due to maternal infection results in significantly decreased myelin formation around neurons. Myelin is a protective sheath that forms around neurons and is required for brain processing speed. This study suggests that reduced myelin resulting from Zika infection in utero is likely a contributing factor to severe deficits in brain development and microcephaly. Supported by ORIP (P51OD010425), NEI, and NIAID.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System
Tan et al., Nature Chemical Biology. 2023.
https://doi.org/10.1038/s41589-022-01165-6
Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals. The investigators showed that SGDGs possess anti-inflammatory activity, suggesting a potential role for this lipid class in age-related neurodegenerative diseases. Supported by ORIP (P51OD011092), NIA, NCI, NIDDK, and NINDS.
Parallel Processing, Hierarchical Transformations, and Sensorimotor Associations along the “Where” Pathway
Doudlah et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.78712
Visually guided behaviors require the brain to transform ambiguous retinal images into object-level spatial representations and map those representations to motor responses. These capabilities are supported by the dorsal “where” pathway in the brain, but the specific contributions of areas along this pathway have remained elusive. Using a rhesus macaque model, researchers compared neuronal activity in two areas along the “where” pathway that bridge the parieto-occipital junction: intermediate visual area V3A and the caudal intraparietal (CIP) area. Neuronal activity was recorded while the animals made perceptual decisions based on judging the tilt of 3D visual patterns. The investigators found that CIP shows higher-order spatial representations and more choice-correlated responses, which support a V3A-to-CIP hierarchy. The researchers also discovered modulation of V3A activity by extraretinal factors, suggesting that V3A might be better characterized as contributing to higher-order behavioral functions rather than low-level visual feature processing. Supported by ORIP (P51OD011106), NEI, NICHD, and NINDS.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation
Eerhart et al., Transplantation. 2022.
Investigators evaluated the efficacy of a high-dose recombinant human C1 esterase inhibitor (rhC1INH) in preventing delayed graft function (DGF) in a rhesus macaque (RM) model for kidney transplantation after brain death and prolonged cold ischemia. The majority (4 of 5) of vehicle-treated recipients developed DGF, whereas DGF was observed in only 1 of 8 rhC1INH-treated recipients. RMs treated with rhC1INH also had faster creatine recovery, superior urinary output, and reduced biomarkers of allograft injury for the first week. The results suggest high-dose C1INH treatment in transplant recipients is an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes. Supported by ORIP (P51OD011106), NIAID, and NIDDK.
Lipocalin-2 Is an Anorexigenic Signal in Primates
Petropoulou et al., eLife. 2020.
https://doi.org/10.7554/eLife.58949
The hormone lipocalin-2 (LCN2) suppresses food intake in mice. Researchers demonstrated that LCN2 increases after a meal and reduces hunger in people with normal weight or overweight, but not in obese individuals. The researchers also showed that LCN2 crosses the blood-brain barrier and binds to the hypothalamus in vervet monkeys. LCN2 was found to bind to the hypothalamus in human, baboon, and rhesus macaque brain sections. When injected into vervets, LCN2 suppressed food intake and lowered body weight without toxic effects in short-term experiments. These findings lay the groundwork to investigate whether LCN2 might be a useful treatment for obesity. Supported by ORIP (P40OD010965), NCATS, NIDDK, NIA, and NHLBI.