Selected Grantee Publications
First-in-Human ImmunoPET Imaging of COVID-19 Convalescent Patients Using Dynamic Total-Body PET and a CD8-Targeted Minibody
Omidvari et al., Science Advances. 2023.
https://pubmed.ncbi.nlm.nih.gov/36993568/
Developing noninvasive methods for in vivo quantification of T cell distribution and kinetics is important because most T cells reside in the tissue. Investigators presented the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell distribution in healthy individuals and COVID-19 patients. Kinetic modeling results aligned with the expected T cell trafficking effects. Tissue-to-blood ratios were consistent with modeled net influx rates and flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory. Supported by ORIP (S10OD018223) and NCI.
Characterizing a Photoacoustic and Fluorescence Imaging Platform for Preclinical Murine Longitudinal Studies
Thompson et al., Journal of Biomedical Optics . 2023.
https://pubmed.ncbi.nlm.nih.gov/36895414/
Preclinical studies using animal models require medical imaging technology with sufficient resolution and sensitivity for anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modalities capitalizes on their strengths and mitigates disadvantages. In this publication, the authors describe TriTom, a preclinical imaging system that integrates PA and FL. They characterized the PA spatial resolution, PA sensitivity, PA spectral accuracy, optical spatial resolution, and FL sensitivity of the platform and demonstrated anatomical imaging in mice. This report demonstrates TriTom’s suitability for biomedical imaging applications. Supported by ORIP (R43OD023029) and NCI.