Selected Grantee Publications
- Clear All
- 18 results found
- nci
- Pediatrics
- Stem Cells/Regenerative Medicine
Small-Diameter Artery Grafts Engineered from Pluripotent Stem Cells Maintain 100% Patency in an Allogeneic Rhesus Macaque Model
Zhang et al., Cell Reports Medicine. 2025.
https://www.cell.com/cell-reports-medicine/fulltext/S2666-3791(25)00075-8
Globally, the leading cause of death is occlusive arterial disease, but surgical revascularization improves patient prognosis and reduces mortality. Vascular grafts often are needed in coronary bypass surgery for surgical revascularization. However, the clinically approved option for small-diameter revascularization is autologous vascular grafts, which require invasive harvesting methods, and many patients lack suitable vessels. Researchers developed a novel method for graft development using arterial endothelial cells (AECs), derived from pluripotent stem cells (PSCs), on expanded polytetrafluoroethylene using specific adhesion molecules. This study used a 6- to 13-year-old male rhesus macaque arterial interposition grafting model. The major histocompatibility complex mismatched wild-type (MHC-WT) AEC grafts were successful when implanted in rhesus macaques and attracted host cells to the engraftment, leading to 100% patency for 6 months. The results highlight a novel strategy for generating artery grafts from PSC-derived MHC-WT AECs that overcomes current challenges in graft development and may have future clinical applications. Supported by ORIP (P51OD011106, S10OD023526), NCI, and NHLBI.
Preclinical Use of a Clinically-Relevant scAAV9/SUMF1 Vector for the Treatment of Multiple Sulfatase Deficiency
Presa et al., Communications Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39870870
This study evaluates a gene therapy strategy using an adeno-associated virus (AAV)/SUMF1 vector to treat multiple sulfatase deficiency (MSD), a rare and fatal lysosomal storage disorder caused by mutations in the SUMF1 gene. Researchers delivered the functional gene to male and female Sumf1 knockout mice either neonatally or after symptom onset. Neonatal treatment via cerebral spinal fluid extended survival up to 1 year, alleviated MSD symptoms, and restored normal behavior and cardiac and visual function without toxicity. Treated tissues showed widespread SUMF1 expression and enzymatic activity. These findings support the translational potential of this gene replacement therapy for clinical use in MSD patients. Supported by ORIP (U42OD010921, U54OD020351, U54OD030187) and NCI.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
Bone Marrow Transplantation Increases Sulfatase Activity in Somatic Tissues in a Multiple Sulfatase Deficiency Mouse Model
Presa et al., Communications Medicine. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11502872/pdf/43856_2024_Article_648.pdf
Multiple Sulfatase Deficiency (MSD) is a rare genetic disorder where patients demonstrate loss of function mutations in the SUMF1 gene, resulting in a severe reduction in sulfatase activity. This enzyme deficiency causes impaired lysosomal function and widespread inflammation, leading to clinical manifestations like neurodegeneration, vision and hearing loss, and cardiac disease. The researchers evaluated the therapeutic potential of hematopoietic stem cell transplant (HSCT) to initiate cross-correction, where functional sulfatase enzymes secreted from the healthy donor cells are taken up to restore function in enzyme-deficient host cells. Bone marrow from healthy male and female B6-Sumf1(+/+) mice were transplanted into B6-Sumf1(S153P/S153P) mice, a model for MSD. The results showed that HSCT is suitable to rescue sulfatase activity in peripheral organs, such as the liver, spleen, and heart, but is not beneficial alone in inhibiting the central nervous system pathology of MSD. Supported by ORIP (U54OD020351, U54OD030187, U42OD010921) and NCI.
Immunization With Germ Line–Targeting SOSIP Trimers Elicits Broadly Neutralizing Antibody Precursors in Infant Macaques
Nelson et al., Science Immunology. 2024.
https://www.science.org/doi/10.1126/sciimmunol.adm7097
Broadly neutralizing antibodies (bnAbs) offer a promising approach for preventing and treating HIV infection, but the ability to induce bnAbs at protective levels has been a challenge. Previous studies have shown that children living with HIV develop bnAbs more efficiently than adults living with HIV. This study evaluated the ability of a stabilized form of Env—SOSIP—to elicit an immune response in young rhesus macaques. The SOSIP protein was engineered to activate naïve B cells expressing germline antibody precursors. Infant macaques were immunized with wild-type SOSIP (SOSIP) or germline-targeting SOSIP (GT1.1), followed by a SOSIP booster. Both SOSIP and GT1.1 induced a protective immune response, but only GT1.1 induced VRC01-like bnAb precursors—antibodies that bind Env’s CD4-binding site and provide the broadest possible protection. These results represent a possible childhood HIV immunization strategy that would elicit protective immunity before sexual debut. Supported by ORIP (P51OD011107), NCI, and NIAID.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Intestinal Microbiota Controls Graft-Versus-Host Disease Independent of Donor–Host Genetic Disparity
Koyama et al., Immunity. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480848/
Allogeneic hematopoietic stem cell transplantation is a curative therapy for hematopoietic malignancies and non-malignant diseases, but acute graft-versus-host disease (GVHD) remains a serious complication. Specifically, severe gut GVHD is the major cause of transplant-related mortality. Here, the authors show that genetically identical mice, sourced from different vendors, had distinct commensal bacterial compositions, which resulted in significantly discordant severity in GVHD. These studies highlight the importance of pre-transplant microbiota composition for the initiation and suppression of immune-mediated pathology in the gastrointestinal tract, demonstrating the impact of non-genetic environmental determinants to transplant outcome. Supported by ORIP (S10OD028685), NIA, NCI, and NHLBI.
Infection of the Maternal–Fetal Interface and Vertical Transmission Following Low-Dose Inoculation of Pregnant Rhesus Macaques (Macaca mulatta) with an African-Lineage Zika Virus
Koenig et al., PLOS ONE. 2023.
https://doi.org/10.1371/journal.pone.0284964
Researchers examined transmission of Zika virus to nonhuman primate fetuses during pregnancy. Even with a low dosage of inoculation of the dams, the investigators found that the Zika virus infected fetuses, despite the presence of a “placental fortress,” which normally protects fetuses during gestation. This transmission illustrates the high level of infectivity threat that Zika poses, which may increase if mosquitoes expand their global habitats. Understanding how Zika breaches the placental barrier will help researchers develop strategies to prevent fetal infection during pregnancy and thereby prevent adverse outcomes, such as brain malformation defects. Supported by ORIP (P51OD011106, S10OD023526), NIAID, NCI, and NIGMS.