Selected Grantee Publications
- Clear All
- 3 results found
- nci
- Rare Diseases
Preclinical Use of a Clinically-Relevant scAAV9/SUMF1 Vector for the Treatment of Multiple Sulfatase Deficiency
Presa et al., Communications Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39870870
This study evaluates a gene therapy strategy using an adeno-associated virus (AAV)/SUMF1 vector to treat multiple sulfatase deficiency (MSD), a rare and fatal lysosomal storage disorder caused by mutations in the SUMF1 gene. Researchers delivered the functional gene to male and female Sumf1 knockout mice either neonatally or after symptom onset. Neonatal treatment via cerebral spinal fluid extended survival up to 1 year, alleviated MSD symptoms, and restored normal behavior and cardiac and visual function without toxicity. Treated tissues showed widespread SUMF1 expression and enzymatic activity. These findings support the translational potential of this gene replacement therapy for clinical use in MSD patients. Supported by ORIP (U42OD010921, U54OD020351, U54OD030187) and NCI.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
Bone Marrow Transplantation Increases Sulfatase Activity in Somatic Tissues in a Multiple Sulfatase Deficiency Mouse Model
Presa et al., Communications Medicine. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11502872/pdf/43856_2024_Article_648.pdf
Multiple Sulfatase Deficiency (MSD) is a rare genetic disorder where patients demonstrate loss of function mutations in the SUMF1 gene, resulting in a severe reduction in sulfatase activity. This enzyme deficiency causes impaired lysosomal function and widespread inflammation, leading to clinical manifestations like neurodegeneration, vision and hearing loss, and cardiac disease. The researchers evaluated the therapeutic potential of hematopoietic stem cell transplant (HSCT) to initiate cross-correction, where functional sulfatase enzymes secreted from the healthy donor cells are taken up to restore function in enzyme-deficient host cells. Bone marrow from healthy male and female B6-Sumf1(+/+) mice were transplanted into B6-Sumf1(S153P/S153P) mice, a model for MSD. The results showed that HSCT is suitable to rescue sulfatase activity in peripheral organs, such as the liver, spleen, and heart, but is not beneficial alone in inhibiting the central nervous system pathology of MSD. Supported by ORIP (U54OD020351, U54OD030187, U42OD010921) and NCI.