Selected Grantee Publications
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
The Role of ATP Citrate Lyase in Myelin Formation and Maintenance
Schneider et al., Glia. 2024.
https://pubmed.ncbi.nlm.nih.gov/39318247/
Myelin formation by Schwann cells is critical for peripheral nervous system development and long-term neuronal function. The study examined how acetyl coenzyme A (acetyl-CoA), essential for lipid synthesis in myelin, is derived, with a focus on mitochondrial ATP citrate lysate (ACLY). By using both sexes in a Schwann cell–specific ACLY knockout mouse model, the authors reported that ACLY plays a role in acetyl-CoA supply for myelin maintenance but not myelin formation. ACLY is necessary for sustaining myelin gene expression and preventing nerve injury pathways. This work highlights a unique dependency on mitochondrial acetyl-CoA for Schwann cell integrity, providing insights into lipid metabolism in neuronal repair. Supported by ORIP (T35OD011078), NICHD, and NINDS.
Bone Marrow Transplantation Increases Sulfatase Activity in Somatic Tissues in a Multiple Sulfatase Deficiency Mouse Model
Presa et al., Communications Medicine. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11502872/pdf/43856_2024_Article_648.pdf
Multiple Sulfatase Deficiency (MSD) is a rare genetic disorder where patients demonstrate loss of function mutations in the SUMF1 gene, resulting in a severe reduction in sulfatase activity. This enzyme deficiency causes impaired lysosomal function and widespread inflammation, leading to clinical manifestations like neurodegeneration, vision and hearing loss, and cardiac disease. The researchers evaluated the therapeutic potential of hematopoietic stem cell transplant (HSCT) to initiate cross-correction, where functional sulfatase enzymes secreted from the healthy donor cells are taken up to restore function in enzyme-deficient host cells. Bone marrow from healthy male and female B6-Sumf1(+/+) mice were transplanted into B6-Sumf1(S153P/S153P) mice, a model for MSD. The results showed that HSCT is suitable to rescue sulfatase activity in peripheral organs, such as the liver, spleen, and heart, but is not beneficial alone in inhibiting the central nervous system pathology of MSD. Supported by ORIP (U54OD020351, U54OD030187, U42OD010921) and NCI.
Administration of Anti-HIV-1 Broadly Neutralizing Monoclonal Antibodies With Increased Affinity to Fcγ Receptors During Acute SHIV AD8-EO Infection
Dias et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-51848-y
Anti-HIV broadly neutralizing antibodies (bNAbs) mediate virus neutralization and antiviral effector functions through Fab and Fc domains, respectively. This study investigated the efficacy of wild-type (WT) bNAbs and modified bNAbs with enhanced affinity for Fcγ receptors (S239D/I332E/A330L [DEL]) after acute simian-HIVAD8-EO (SHIVAD8-EO) infection in male and female rhesus macaques. The emergence of the virus in the plasma and lymph nodes occurred earlier in macaques given DEL bNAbs than in those given WT bNAbs. Overall, the administration of DEL bNAbs revealed higher levels of immune responses. The results suggest that bNAbs with an enhanced Fcγ receptor affinity offer a potential therapeutic strategy by targeting HIV more effectively during early infection stages. Supported by ORIP (P40OD028116), NCI, and NIAID.
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
RNA Landscapes of Brain and Brain-Derived Extracellular Vesicles in Simian Immunodeficiency Virus Infection and Central Nervous System Pathology
Huang et al., The Journal of Infectious Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/38079216/
Brain tissue–derived extracellular vesicles (bdEVs) act locally in the central nervous system (CNS) and may indicate molecular mechanisms in HIV CNS pathology. Using brain homogenate (BH) and bdEVs from male pigtailed macaques, researchers identified dysregulated RNAs in acute and chronic infection. Most dysregulated messenger RNAs (mRNAs) in bdEVs reflected dysregulation in source BH, and these mRNAs are disproportionately involved in inflammation and immune responses. Additionally, several circular RNAs were differentially abundant in source tissue and might be responsible for specific differences in small RNA levels in bdEVs during simian immunodeficiency virus (SIV) infection. This RNA profiling shows potential regulatory networks in SIV infection and SIV-related CNS pathology. Supported by ORIP (U42OD013117), NCI, NIAID, NIDA, NIMH, and NINDS.
Evolution of the Clinical-Stage Hyperactive TcBuster Transposase as a Platform for Robust Non-Viral Production of Adoptive Cellular Therapies
Skeate et al., Molecular Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38627969/
In this study, the authors report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieve high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. This proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improved survival in a Burkitt lymphoma xenograft model in vivo. Their work suggests that TcB-M is a versatile, safe, efficient, and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition. Supported by ORIP (F30OD030021), NCI, NHLBI, and NIAID.